Preparation of Experiments on Growing Zinc–Cadmium Telluride Crystals in Microgravity
- 作者: Аzhgalieva А.S.1, Borisenko Е.B.1, Borisenko D.N.1, Burmistrov А.Е.2, Кolesnikov N.N.1, Тimonina А.V.1, Senchenkov А.S.2, Fursova Т.N.1, Shakhlevich О.F.1
-
隶属关系:
- Osipyan Institute of Solid State Physics of the RAS
- Research and Development Institute for Launch Complexes
- 期: 编号 2 (2024)
- 页面: 89-93
- 栏目: Articles
- URL: https://archivog.com/1028-0960/article/view/664783
- DOI: https://doi.org/10.31857/S1028096024020132
- EDN: https://elibrary.ru/AWSFMJ
- ID: 664783
如何引用文章
详细
Cd1-xZnxTe crystals are necessary for the production of ionizing radiation detectors widely used in science, technology, medicine and other fields. Internal stresses during crystallization lead to generation of dislocations and low-angle boundaries. Typical problem of melt crystal growth of Cd-Zn-Te compounds are tellurium inclusions, which deteriorate detector performance. Microgravity conditions provide unique opportunities for growing high-quality crystals due to the absence of convection, more equilibrium conditions of melt mixing, and a decrease in internal stresses. Since the properties of such crystals strongly depend on the production conditions, seeds and a feed ingot with specified compositions and structure are required. Ampoules with two compositions of materials have been prepared for the space experiment. Crystals of different compositions Cd0.96Zn0.04Te and Cd0.9Zn0.1Te were produced for two charges. They consist of an oriented seed, solvent, and feeding ingot, which are single-phased, single crystalline, have certain crystallographic orientation, meet demands for growth of Cd–Zn–Te crystals in microgravity. Ampoules containing these materials were sent to International Space Station for crystal growth on equipment already assembled at “Nauka” station.
全文:

作者简介
А. Аzhgalieva
Osipyan Institute of Solid State Physics of the RAS
编辑信件的主要联系方式.
Email: azhgalieva@issp.ac.ru
俄罗斯联邦, Chernogolovka
Е. Borisenko
Osipyan Institute of Solid State Physics of the RAS
Email: borisenk@issp.ac.ru
俄罗斯联邦, Chernogolovka
D. Borisenko
Osipyan Institute of Solid State Physics of the RAS
Email: azhgalieva@issp.ac.ru
俄罗斯联邦, Chernogolovka
А. Burmistrov
Research and Development Institute for Launch Complexes
Email: azhgalieva@issp.ac.ru
俄罗斯联邦, Moscow
N. Кolesnikov
Osipyan Institute of Solid State Physics of the RAS
Email: azhgalieva@issp.ac.ru
俄罗斯联邦, Chernogolovka
А. Тimonina
Osipyan Institute of Solid State Physics of the RAS
Email: azhgalieva@issp.ac.ru
俄罗斯联邦, Chernogolovka
А. Senchenkov
Research and Development Institute for Launch Complexes
Email: azhgalieva@issp.ac.ru
俄罗斯联邦, Moscow
Т. Fursova
Osipyan Institute of Solid State Physics of the RAS
Email: azhgalieva@issp.ac.ru
俄罗斯联邦, Chernogolovka
О. Shakhlevich
Osipyan Institute of Solid State Physics of the RAS
Email: azhgalieva@issp.ac.ru
俄罗斯联邦, Chernogolovka
参考
- Xu Y.D., Jie W.Q., He Y.H., Guo R.R., Tao W.A.N.G., Zha G.Q. // Prog. Nat. Sci.: Mater. Int. 2011. V. 21. P. 66.
- Roy U.N., Camarda G.S., Cui Y., Gul R, Yang G., Zazvorka J., Dedic V., Franc J., James R.B. // Sci. Rep. 2019. V. 9. Р. 7303. https://www.doi.org/10.1038/s41598-019-43778-3
- Auricchio N., Marchini L., Caroli E., Cola A., Farella I., Donati A., Zappettini A. // IEEE Trans. Nucl. Sci. 2011. V. 58. Iss. 2. P. 552. https://www.doi.org/10.1109/TNS.2010.2103324
- Davydov L., Fochuk P., Zakharchenko A., Kutny V., Rybka A., Kovalenko N., Sulima S., Terzin I., Gerasimenko A., Kosmyna M., Sklyarchuk V., Kopach O., Panchuk O., Pudov A., Bolotnikov A.E., James R.B. // IEEE Trans. Nucl. Sci. 2015. V. 62. № 4. Р. 1779. https://www.doi.org/10.1109/TNS.2015.2448939
- Egarievwe S.U., Yang G., Egarievwe A.A., Okwechime I.O., Gray J., Hales Z.M., Hossain A., Camarda G.S., Bolotnikov A.E., James R.B. // Nucl. Instrum. Methods Phys. Res. 2015. V. 784. P. 51. https://www.doi.org/10.1016/j.nima.2015.02.006
- Schlesinger T.E., Brunett B., Yao H., Vanscyoc J.M., James R.B., Egarievwe S.U., Chattopadhyay K., Ma X.-Y., Burger A., Giles N., El-Hanany U., Shahar A., Tsigelman A. // J. Electronic Mater. 1999. V. 28. № 6. P. 864. https://www.doi.org/10.1007/s11664-999-0085-z
- Sordo S.D., Abbene L., Caroli E., Mancini A.M., Zappettini A., Ubertini P. // Sensors. 2009. V. 9 № 5. P. 3491. https://www.doi.org/10.3390/s90503491
- Roy U.N., Burger A., James R.B. // J. Crystal Growth. 2013. V. 379. P. 57. https://www.doi.org/10.1016/j.jcrysgro.2012.11.047
- Hawkins S.A., Villa-Aleman E., Duff M.C., Hunter D.B., Burger A., Groza M., Buliga V., Black D.R. // J. Electronic Mater. 2008. V. 37. № 9. P. 1438.
- Павлюк М.Д. Детекторные кристаллы на основе CdTe и Cd1-xZnxTe для прямого счета рентгеновских и гамма – квантов: Дисс. канд. физико-математических наук: 01.04.07. Москва: ФНИЦ “Кристаллография и фотоника” РАН, 2020.153 с.
- Sato K., Seki Y., Matsuda Y., Oda O. // J. Crystal Growth. 1999. V. 197. № 3. P. 413. https://www.doi.org/10.1016/S0022-0248(98)00739-8
- Verger L., Drezet A., Gros d’Aillon E., Mestais C., Monnet O., Montеmont G., Dierre F., Peyret O. New perspectives in gamma-ray imaging with CdZnTe/CdTe. // IEEE Symposium Conf. Record Nucl. Sci. 2005. 16–22 October 2004, Rome, Italy. https://www.doi.org/10.1109/NSSMIC.2004.1462721
- Пряникова Е.В., Мирофянченко А.Е., Смирнова Н.А, Силина А.А., Бурлаков И.Д., Гришечкин М.Б., Денисов И.А, Шматов Н.И. // Прикладная физика. 2016. № 2. С. 82.
- Triboulet R., Tromson-Carli A., Lorans D., Nguyen Duy T. // J. Electronic Mat. 1993. V. 22. № 8. P. 827. https://www.doi.org/10.1007/BF02817493
- Hew N., Spagnoli D., Faraone L. // ACS Appl. Electron. Mater. 2021. V. three. № 11. P. 5102. https://www.doi.org/10.1021/acsaelm.1c00835
- Borisenko E.B., Kolesnikov N.N., Senchenkov A.S., Fiederle M. // J. Crystal Growth. 2017. V. 457. P. 262. https://www.doi.org/10.1016/j.jcrysgro.2016.08.063
- Kolesnikov N.N., James R.B., Berzigiarova N.S., Kulakov M.P. HPVB and HPVZM growth of CdZnTe, CdSe, and ZnSe crystals. // X-ray and Gamma-ray Detectors and Applications IV. Proc. SPIE. San-Diego, December 2002. V. 4787. P. 93.
- Левченко А.А., Колесников Н.Н., Борисенко Д.Н. Ампула для выращивания кристаллов в условиях микрогравитации: пат. на изобретение 2547758 РФ. № 2014105414/05; заявл. 13.02.14; опубл. 10.04.15, Бюл. № 10. 4 с.
- Weinstein M., Wolff G.A., Da B.N. // J. Appl. Phys. Lett. 1965. V. 6. № 4. P. 73. https://www.doi.org/10.1063/1.1754172
- Kulakov M.P., Balyakina V. // J. Сrystal Growth. 1991. V. 113. № 3–4, P. 653. https://www.doi.org/10.1016/0022-0248(91)90101-A
- Hossain A., Bolotnikov A.E., Camarda G.S., Cui Y, Yang G., James R.B. // J. Crystal Growth. 2008. V. 310. № 21. P. 4493. https://www.doi.org/10.1016/j.jcrysgro.2008.07.088
补充文件
