Energy Barriers for the Spontaneous Magnetization Reversal of the Atomic Co Chains on Pt(664) Surface in the Model with Dzyaloshinskii–Moriya Interaction

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The analytical approach has been developed in the framework of the continuous XY-model. This approach allows calculating the spontaneous magnetization reversal time of finite-length atomic chains on the metallic surface. The interaction of the magnetic moments of atoms is described by the classical Hamiltonian, which includes the Heisenberg exchange interaction, the Dzyaloshinskii–Moriya interaction, and the magnetic anisotropy energy. Using the Co/Pt(664) system as an example, it has been shown that the proposed method is in a good agreement with the results of the numerical simulation in the limit of short and long atomic chains. And for atomic chains of intermediate length, it can be used to estimate an upper bound on the spontaneous magnetization reversal time. We obtained the dependences of the spontaneous magnetization reversal time of finite-length Co chains the value of the exchange integral, parameters of the magnetic anisotropy, and also on the value of the projection of the Dzyaloshinskii vector onto the axis perpendicular to the plane containing the magnetic moments of the atoms. It is shown that the proposed method has a wide range of applicability both in terms of temperature and the values of the physical parameters characterizing the magnetic properties of the atomic chains.

作者简介

S. Kolesnikov

Lomonosov Moscow State University, Faculty of Physics

编辑信件的主要联系方式.
Email: kolesnikov_s_v_@mail.ru
俄罗斯联邦, Moscow

E. Sapronova

Lomonosov Moscow State University, Faculty of Physics

Email: kolesnikov_s_v_@mail.ru
俄罗斯联邦, Moscow

参考

  1. Zutic I., Fabian J., Das Sarma S. // Rev. Mod. Phys. 2004. V. 76. P. 323. https://www.doi.org/10.1103/RevModPhys.76.323
  2. Mermin N.D. Quantum Computer Science: An Introduction. Cambridge: Cambridge University Press, 2007.
  3. Bose S. // Phys. Rev. Lett. 2003. V. 91. P. 207901. https://www.doi.org/10.1103/PhysRevLett.91.207901
  4. Bose S. // Contemporary Phys. 2007. V. 48. P. 13. https://www.doi.org/10.1080/00107510701342313
  5. Verma H., Chotorlishvili L., Berakdar J., Mishra S.K. // Europhys. Lett. 2017. V. 119. P. 30001. https://www.doi.org/10.1209/0295-5075/119/30001
  6. Gambardella P., Dallmeyer A., Maiti K., Malagoli M.C., Eberhardt W., Kern K., Carbone C. // Nature. 2002. V. 416. P. 301. https://www.doi.org/10.1038/416301a
  7. Gambardella P., Rusponi S., Veronese M., Dhesi S.S., Grazioli C., Dallmeyer A., Cabria I., Zeller R., Dederichs P.H., Kern K., Carbone C., Brune H. // Science. 2003. V. 300. P. 1130. https://www.doi.org/10.1126/science.1082857
  8. Dzyaloshinsky I. // J. Phys. Chem. Solids. 1958. V. 4. P. 241. https://www.doi.org/10.1016/0022-3697 (58)90076-3
  9. Moriya T. // Phys. Rev. Lett. 1960. V. 4. P. 228. https://www.doi.org/10.1103/PhysRevLett.4.228
  10. Choi D.J., Lorente N., Wiebe J., von Bergmann K., Otte A.F., Heinrich A.J. // Rev. Mod. Phys. 2019. V. 91. P. 041001. https://www.doi.org/10.1103/RevModPhys.91.041001
  11. Ландау Л.Д, Лифшиц Е.М. Электродинамика сплошных сред. М.: Физматлит, 2005. 656 с.
  12. Nembach H.T., Shaw J.M., Weiler M., Jue E., Silva T.J. // Nature Phys. 2015. V. 11. P. 825. https://www.doi.org/10.1038/nphys3418
  13. Cho J., Kim N.-H., Lee S., Kim J.-S., Lavrijsen R., Solignac A., Yin Y., Han D.-S., van Hoof N.J.J., Swagten H.J.M., Koopmans B., You C.-Y. // Nature Comm. 2015. V. 6. P. 7635. https://www.doi.org/10.1038/ncomms8635
  14. Fert A., Reyren N., Cros V. // Nat. Rev. Mater. 2017. V. 2. P. 17031. https://www.doi.org/10.1038/natrevmats.2017.31
  15. Soumyanarayanan A., Reyren N., Fert A., Panagopoulos C. // Nature. 2016. V. 539. P. 509. https://www.doi.org/10.1038/nature19820
  16. Garst M., Waizner J., Grundler D. // J. Phys. D: Appl. Phys. 2017. V. 50. P. 293002. https://www.doi.org/10.1088/1361-6463/aa7573
  17. Mazzarello R., Tosatti E. // Phys. Rev. B. 2009. V. 79. P. 134402. https://www.doi.org/10.1103/PhysRevB.79.134402
  18. Menzel M., Mokrousov Y., Wieser R., Bickel J.E., Vedmedenko E., Blügel S., Heinze S., von Bergmann K., Kubetzka A., Wiesendanger R. // Phys. Rev. Lett. 2012. V. 108. P. 197204.
  19. Heide M., Bihlmayer G., Blügel S. // Phys. Rev. B. 2008. V. 78. P. 140403. https://www.doi.org/10.1103/PhysRevB.78.140403
  20. Schweflinghaus B., Zimmermann B., Heide M., Bihlmayer G., Blügel S. // Phys. Rev. B. 2016. V. 94. P. 024403. https://www.doi.org/10.1103/PhysRevB.94.024403
  21. Chotorlishvili L., Wang X., Dyrdal A., Guo G., Dugaev V.K., Barnás J., Berakdar J. // Phys. Rev. B. 2022. V. 106. P. 014417. https://www.doi.org/10.1103/PhysRevB.106.014417
  22. Kolesnikov S.V., Sapronova E.S. // IEEE Magn. Lett. 2022. V. 13. P. 2505905. https://www.doi.org/10.1109/LMAG.2022.3226656
  23. Bessarab P.F., Uzdin V.M., Jonsson H. // Computer Phys. Comm. 2015. V. 196. P. 335. https://www.doi.org/10.1016/j.cpc.2015.07.001
  24. Chudnovsky E.M., Gunther L. // Phys. Rev. Lett. 1988. V. 60. P. 661. https://www.doi.org/10.1103/PhysRevLett.60.661
  25. Smirnov A.S., Negulyaev N.N., Hergert W., Saletsky A.M., Stepanyuk V.S. // New J. Phys. 2009. V. 11. P. 063004. https://www.doi.org/10.1088/1367-2630/11/6/063004
  26. Popov A.P., Rettori A., Pini M.G. // Phys. Rev. B 90, 134418 https://www.doi.org/10.1103/PhysRevB.90.134418
  27. Колесников С.В., Сапронова Е.С. // ЖЭТФ. 2022. Т. 162. Вып. 5. С. 708.
  28. Колесников С.В., Колесникова И.Н. // ЖЭТФ. 2017. Т. 152. Вып. 4. С. 759.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Energy barriers ΔE1 (1) and ΔE2 (2) for the remagnetization of a chain of N Co atoms on the Pt(664) surface. The dots show the values found numerically by the geodesic elastic tape method [22], the lines show the theoretical values obtained in the framework of the XY model

下载 (143KB)
3. Fig. 2. Dependence of the time τ of spontaneous remagnetization of the Co/Pt(664) atomic chain on the exchange integral J (a), the magnetic anisotropy constants K (b) and E (c), and the projection of the Dzialoszynski vector Dz (d). The theoretical dependences obtained within the XY-model for chains of 10 and 100 atoms are depicted by lines. The dots show the values calculated using energy barriers obtained using the geodesic elastic band method [22]

下载 (479KB)

版权所有 © Russian Academy of Sciences, 2024