Методика изготовления и характеризация ван-дер-ваальсовых гетероструктур

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В статье приведено пошаговое описание методики изготовления различных ван-дер-ваальсовых гетероструктур. Получены монослойные и малым количеством слоев объекты (чешуйки) из слоистых материалов, в частности из графита и гексагонального нитрида бора. Показана их сборка в системы с применением разных подходов в зависимости от необходимой структуры. Подробно описана процедура изготовления контактов к этим объектам с приведением параметров для плазмохимии и напыления металлов. Результаты измерения транспортных свойств образцов при различных температурах демонстрируют эффект поля, но ряд особенностей – сильное смещение по затвору точки нейтральности заряда, большое сопротивление вдали от точки нейтральности заряда, малая подвижность носителей заряда – свидетельствуют о низком качестве полученных образцов. Тем не менее, одна из изготовленных систем оказалась хорошего качества: максимальная подвижность оценена в 15000 см2/(В∙с), магнитополевые зависимости демонстрируют стандартную для качественного графена картину квантового эффекта Холла. Изображения исследованных систем, полученные с помощью электронного микроскопа, неожиданно выявили большое количество загрязнений на поверхности чешуек, с которыми мы связываем соответствующее качество наших образцов. Приведены предварительные результаты очистки чешуек химическими соединениями и температурной обработкой.

Об авторах

А. Ф. Шевчун

Институт физики твердого тела РАН

Автор, ответственный за переписку.
Email: shevchun@issp.ac.ru
Россия, Черноголовка

М. Г. Прокудина

Институт физики твердого тела РАН

Email: shevchun@issp.ac.ru
Россия, Черноголовка

С. В. Егоров

Институт физики твердого тела РАН

Email: shevchun@issp.ac.ru
Россия, Черноголовка

Е. С. Тихонов

Институт физики твердого тела РАН

Email: shevchun@issp.ac.ru
Россия, Черноголовка

Список литературы

  1. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A. // Nature. 2005. V. 438. P. 197. https://www.doi.org/10.1038/nature04233.
  2. Novoselov K.S., Mishchenko A., Carvalho A., Castro Neto A.H. // Science. 2016. V. 353. Iss. 6298. https://www.doi.org/10.1126/science.aac9439
  3. Yankowitz M., Xue J., Cormode D., Sanchez-Yamagi-shi J.D., Watanabe K., Taniguchi T., Jarillo-Herrero P., Jacquod P., LeRoy B.J. // Nature Phys. 2012. V. 8. P. 382. https://www.doi.org/10.1038/nphys2272.
  4. Shi G., Hanlumyuang Y., Liu Z., Gong Y., Gao W., Li B., Kono J., Lou J., Vajtai R., Sharma P., Ajayan P.M. // Nano Lett. 2014. V. 14. P. 1739. https://www.doi.org/10.1021/nl4037824
  5. Larentis S., Tolsma J. R., Fallahazad B., Dillen D.C., Kim K., MacDonald A.H., Tutuc E. // Nano Lett. 2014. V. 14. P. 2039. https://www.doi.org/10.1021/nl500212s
  6. Черненко А.В., Бричкин А.С., Голышков Г.М., Шевчун А.Ф. // Известия РАН. Сер. Физ. 2023. Т. 87. № 2. С. 189. https://www.doi.org/10.31857/S0367676522700351
  7. Черненко А.В., Бричкин А.С. // Известия РАН. Сер. Физ. 2021. Т. 85. № 2. С. 245. https://www.doi.org/10.31857/S0367676521020071
  8. Gannett W., Regan W., Watanabe K., Taniguchi T., Crommie M. F., Zettl A. // Appl. Phys. Lett. 2011. V. 98. P. 242105. https://www.doi.org/10.1063/1.3599708
  9. Kim E., Yu T., Song T. S.,Yu B. // Appl. Phys. Lett. 2011. V. 98. P. 262103. https://www.doi.org/10.1063/1.3604012
  10. Wang L., Chen Z., Dean C. R., Taniguchi T., Watanabe K., Brus L.E., Hone J. // ACS Nano 2012. V. 6. Iss. 10. P. 9314. https://www.doi.org/10.1021/nn304004s
  11. Dean C.R., Young A.F., Cadden-Zimansky P., Wang L., Ren H., Watanabe K., Taniguchi T., Kim P., Hone J., Shepard K.L. // Nature Phys. 2011. V. 207. P. 693. https://www.doi.org/10.1038/nphys2007.
  12. Новоселов K.C. // УФН. 2011. V. 181. P. 1299. https://www.doi.org/10.3367/UFNr.0181.201112f.1299
  13. Xin N., Lourembam J., Kumaravadivel. P., Kazan-tsev A.E., Wu Z., Mullan C., Barrier J., Geim A.A., Grigorieva I.V., Mishchenko A., Principi A., Fal’ko V.I., Ponomarenko L.A., Geim A.K., Berdyugin A.I. // Nature. 2023. V. 616. P. 270. https://www.doi.org/10.1038/s41586-023-05807-0
  14. Huang Y., Sutter E., Shi N.N., Zheng J., Yang T., Englund D., Gao H.-J., Sutter P. // ACS Nano 2015. V. 9. P. 10612. https://www.doi.org/10.1021/acsnano.5b04258
  15. Wang L., Meric I., Huang P. Y., Gao Q., Gao Y., Tran H., Taniguchi T., Watanabe K., Campos L.M., Muller A.D, Guo J., Kim P., Hone J., Shepard K.L., Dean C.R. // Science. 2013. V. 342. Iss. 6158. P. 614. https://www.doi.org/10.1126/science.1244358
  16. Pizzocchero F., Gammelgaard L., Jessen B.S., Cari-dad J.M., Wang L., Hone J., Bøggild B., Booth T.J. // Nature Comm. 2016. V. 7. P. 11894. https://www.doi.org/10.1038/ncomms11894
  17. Dean C.R., Young A.F., Meric I., Lee C., Wang L., Sorgenfrei S., Watanabe K., Taniguchi T., Kim P., Shepard K.L., Hone J. // Nature Nanotechnology. 2010. V. 5. P. 722. https://www.doi.org/10.1038/nnano.2010.172
  18. Geim A.K., Novoselov K.S. // Nature Mater. 2007. V. 6. P. 183. https://www.doi.org/10.1038/nmat1849
  19. Castro Neto A. H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. // Rev. Mod. Phys. 2009. V. 81. P. 109. https://www.doi.org/10.1103/RevModPhys.81.109
  20. Jain A., Bharadwaj P., Heeg S., Parzefall M., Taniguchi T., Watanabe K., Novotny L. // Nanotechnology. 2018. V. 29. P. 265203. https://www.doi.org/10.1088/1361-6528/aabd90

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024