Procedure for Fabrication and Characterization of Van-der-Waals Heterostructures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work we provide a step-by-step description of the technique for manufacturing various van der Waals heterostructures. First, we discuss the procedure to obtain monolayer and few-layer flakes from layered materials, in particular from graphite and hexagonal boron nitride. Next, we consider different approaches to the assembly depending on the required final device. Further, we describe in detail the procedure for making ohmic contacts and give the parameters for plasma chemistry and metal deposition. We observe the field effect in transport measurements but a number of features – a strong shift of the charge neutral point from the zero-gate voltage, a large resistance away from the charge neutral point, and low mobility – indicate a problem with the quality of the resulting devices. Nevertheless, one of the fabricated devices demonstrates reasonable quality – the maximum mobility is estimated at 15000 cm2V–1s–1, the magnetic field dependences demonstrate the quantum Hall effect, which is standard for high-quality graphene. Unexpectedly, scanning electron microscope images of the resulting devices reveal a large amount of contamination on the surface of the flakes, which may explain the corresponding quality of our devices. Preliminary results of flakes cleaning with chemical compounds and thermal treatment are given.

About the authors

A. F. Shevchun

Institute of Solid State Physics of the RAS

Author for correspondence.
Email: shevchun@issp.ac.ru
Russian Federation, Chernogolovka

M. G. Prokudina

Institute of Solid State Physics of the RAS

Email: shevchun@issp.ac.ru
Russian Federation, Chernogolovka

S. V. Egorov

Institute of Solid State Physics of the RAS

Email: shevchun@issp.ac.ru
Russian Federation, Chernogolovka

E. S. Tikhonov

Institute of Solid State Physics of the RAS

Email: shevchun@issp.ac.ru
Russian Federation, Chernogolovka

References

  1. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Katsnelson M.I., Grigorieva I.V., Dubonos S.V., Firsov A.A. // Nature. 2005. V. 438. P. 197. https://www.doi.org/10.1038/nature04233.
  2. Novoselov K.S., Mishchenko A., Carvalho A., Castro Neto A.H. // Science. 2016. V. 353. Iss. 6298. https://www.doi.org/10.1126/science.aac9439
  3. Yankowitz M., Xue J., Cormode D., Sanchez-Yamagi-shi J.D., Watanabe K., Taniguchi T., Jarillo-Herrero P., Jacquod P., LeRoy B.J. // Nature Phys. 2012. V. 8. P. 382. https://www.doi.org/10.1038/nphys2272.
  4. Shi G., Hanlumyuang Y., Liu Z., Gong Y., Gao W., Li B., Kono J., Lou J., Vajtai R., Sharma P., Ajayan P.M. // Nano Lett. 2014. V. 14. P. 1739. https://www.doi.org/10.1021/nl4037824
  5. Larentis S., Tolsma J. R., Fallahazad B., Dillen D.C., Kim K., MacDonald A.H., Tutuc E. // Nano Lett. 2014. V. 14. P. 2039. https://www.doi.org/10.1021/nl500212s
  6. Черненко А.В., Бричкин А.С., Голышков Г.М., Шевчун А.Ф. // Известия РАН. Сер. Физ. 2023. Т. 87. № 2. С. 189. https://www.doi.org/10.31857/S0367676522700351
  7. Черненко А.В., Бричкин А.С. // Известия РАН. Сер. Физ. 2021. Т. 85. № 2. С. 245. https://www.doi.org/10.31857/S0367676521020071
  8. Gannett W., Regan W., Watanabe K., Taniguchi T., Crommie M. F., Zettl A. // Appl. Phys. Lett. 2011. V. 98. P. 242105. https://www.doi.org/10.1063/1.3599708
  9. Kim E., Yu T., Song T. S.,Yu B. // Appl. Phys. Lett. 2011. V. 98. P. 262103. https://www.doi.org/10.1063/1.3604012
  10. Wang L., Chen Z., Dean C. R., Taniguchi T., Watanabe K., Brus L.E., Hone J. // ACS Nano 2012. V. 6. Iss. 10. P. 9314. https://www.doi.org/10.1021/nn304004s
  11. Dean C.R., Young A.F., Cadden-Zimansky P., Wang L., Ren H., Watanabe K., Taniguchi T., Kim P., Hone J., Shepard K.L. // Nature Phys. 2011. V. 207. P. 693. https://www.doi.org/10.1038/nphys2007.
  12. Новоселов K.C. // УФН. 2011. V. 181. P. 1299. https://www.doi.org/10.3367/UFNr.0181.201112f.1299
  13. Xin N., Lourembam J., Kumaravadivel. P., Kazan-tsev A.E., Wu Z., Mullan C., Barrier J., Geim A.A., Grigorieva I.V., Mishchenko A., Principi A., Fal’ko V.I., Ponomarenko L.A., Geim A.K., Berdyugin A.I. // Nature. 2023. V. 616. P. 270. https://www.doi.org/10.1038/s41586-023-05807-0
  14. Huang Y., Sutter E., Shi N.N., Zheng J., Yang T., Englund D., Gao H.-J., Sutter P. // ACS Nano 2015. V. 9. P. 10612. https://www.doi.org/10.1021/acsnano.5b04258
  15. Wang L., Meric I., Huang P. Y., Gao Q., Gao Y., Tran H., Taniguchi T., Watanabe K., Campos L.M., Muller A.D, Guo J., Kim P., Hone J., Shepard K.L., Dean C.R. // Science. 2013. V. 342. Iss. 6158. P. 614. https://www.doi.org/10.1126/science.1244358
  16. Pizzocchero F., Gammelgaard L., Jessen B.S., Cari-dad J.M., Wang L., Hone J., Bøggild B., Booth T.J. // Nature Comm. 2016. V. 7. P. 11894. https://www.doi.org/10.1038/ncomms11894
  17. Dean C.R., Young A.F., Meric I., Lee C., Wang L., Sorgenfrei S., Watanabe K., Taniguchi T., Kim P., Shepard K.L., Hone J. // Nature Nanotechnology. 2010. V. 5. P. 722. https://www.doi.org/10.1038/nnano.2010.172
  18. Geim A.K., Novoselov K.S. // Nature Mater. 2007. V. 6. P. 183. https://www.doi.org/10.1038/nmat1849
  19. Castro Neto A. H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. // Rev. Mod. Phys. 2009. V. 81. P. 109. https://www.doi.org/10.1103/RevModPhys.81.109
  20. Jain A., Bharadwaj P., Heeg S., Parzefall M., Taniguchi T., Watanabe K., Novotny L. // Nanotechnology. 2018. V. 29. P. 265203. https://www.doi.org/10.1088/1361-6528/aabd90

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences