Structure, stacking faults and electrochemical behavior of α-Ta prepared by chemical vapor deposition

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using X-ray diffraction, scanning electron microscopy, glow discharge emission spectroscopy, electrochemistry and strength assessment, stacking faults in tantalum deposited in a helium environment on a copper substrate by chemical vapor deposition and their effect on the protective properties have been studied. It is shown that the probability of formation of stacking faults in deposited bcc tantalum in the {112} planes is a sensitive parameter with respect to the deposition conditions (temperature and helium content). With an increase in helium concentration from high to medium values, the sum of the probabilities of the formation of deformation (α) and twinning (β) stacking faults 1.5α + β in α-Ta increases five times (from 0.025 to 0.13%), with a decrease in temperature from 800 to 750°C — 35 times (from 0.025 to 0.89%). A decrease in the probability of formation of stacking defects in deposited α-Ta tantalum is associated with a significant increase in corrosion resistance and adhesion strength of the coating to the substrate. A mechanism for the formation of metastable hcp phases of tantalum on stacking faults in α-Ta in the {112} planes is proposed.

Texto integral

Acesso é fechado

Sobre autores

A. Lubnin

Udmurt Federal Research Center, Ural Branch of the RAS

Autor responsável pela correspondência
Email: qrcad@udman.ru
Rússia, Izhevsk, 426067

V. Lad’yanov

Udmurt Federal Research Center, Ural Branch of the RAS

Email: qrcad@udman.ru
Rússia, Izhevsk, 426067

B. Pushkarev

Udmurt Federal Research Center, Ural Branch of the RAS

Email: qrcad@udman.ru
Rússia, Izhevsk, 426067

I. Sapegina

Udmurt Federal Research Center, Ural Branch of the RAS

Email: qrcad@udman.ru
Rússia, Izhevsk, 426067

R. Faizullin

Udmurt Federal Research Center, Ural Branch of the RAS

Email: qrcad@udman.ru
Rússia, Izhevsk, 426067

L. Baldaev

LLC Technological Systems of Protective Coatings

Email: qrcad@udman.ru
Rússia, Moscow, 108851

S. Treschev

Udmurt Federal Research Center, Ural Branch of the RAS

Email: qrcad@udman.ru
Rússia, Izhevsk, 426067

Bibliografia

  1. Борисенок Г.В., Васильев Л.А., Ворошнин Л.Г. Химико-термическая обработка металлов и сплавов. М.: Металлургия, 1981. 424 с.
  2. Read M.H., Altman C. // Appl. Phys. Lett. 1965. V. 7. P. 51. https://doi.org/10.1063/1.1754294
  3. Myers S., Lin J., Souza R.M., Sproul W.D., Moore J.J. // Surf. Coat. Technol. 2013. V. 214. P. 38. https://doi.org./10.1016/j.surfcoat.2012.10.061
  4. Справочник химика. Т. 3. Химическое равновесие и кинетика свойства растворов. Электродные процессы / Ред. Никольский Б.П. и др. М.–Л.: Химия, 1965. 1008 с.
  5. Maeng S.M., Axe L., Tyson T.A., Gladczuk L., Sosnowski M. // Surf. Coat. Technol. 2006. V. 200. P. 5717. https://doi.org/10.1016/j.surfcoat.2005.08.128
  6. Feinstein L.G., Huttemann R.D. // Thin Solid Films. 1974. V. 20. P. 103. https://doi.org/10.1016/0040-6090(74)90038-8
  7. Feinstein L.G., Huttemann R.D. // Thin Solid Films. 1973. V. 16. P. 129. https://doi.org/10.1016/0040-6090(73)90163-6
  8. Lee S.L., Cipollo M., Windover D., Rickard C. // Surf. Coat. Technol. 1999. V. 120. P. 44. https://doi.org/ 10.1016/S0257-8972(99)00337-0
  9. Mills D., Young L., Zobel F.G.R. // J. Appl. Phys. 1966. V. 1821. № 4. P. 1821. https://doi.org/ 10.1063/1.1708607
  10. Sosniak J., Polito W.J., Rozgonyi G.A. // J. Appl. Phys. 1967. V. 38. P. 3041. https://doi.org/10.1063/1.1710059
  11. Kodas T.T., Hampden-Smith M.J. The Chemistry of Metal CVD. New York–Basel–Cambridge–Tokyo: Weinheim, 1994. 546 p. https://doi.org/10.1002/9783527615858
  12. Максимкин О.П. Дефекты упаковки, их энергия и влияние на свойства облученных металлов и сплавов. Алматы, 2010. 70 с. https://doi.org/10.13140/RG.2.1.1889.4160
  13. Bauer R., Jägle E.A., Baumann W., Mittemeijer E.J. // Philos. Mag. 2011. V. 91. P. 437. https://doi.org/10.1080/14786435.2010.525541
  14. Betteridge W. // Prog. Mater. Sci. 1980. V. 24. P. 51. https://doi.org/10.1016/0079-6425(79)90004-5
  15. Dorofeev G.A., Ladyanov V.I., Lubnin A.N., Mukhgalin V. V., Kanunnikova O.M., Mikhailova O.M., Aksenova V.V. // Int. J. Hydrogen Energy. 2014. V. 39. P. 9690. https://doi.org/10.1016/j.ijhydene.2014.04.101
  16. Лубнин А.Н., Дорофеев Г.А., Никонова Р.М., Мухгалин В.В., Ладьянов В.И. // Физика твердого тела. 2017. Т. 59. С. 2206. https://doi.org/10.21883/ftt.2017.11.45063.015
  17. Dorofeev G.A., Lubnin A.N., Ulyanov A.L., Kamaeva L.V., Ladyanov V.I., Pushkarev E.S., Shabashov V.A. // Mater. Lett. 2015. V. 159. P. 493. https://doi.org/10.1016/j.matlet.2015.08.050
  18. Дорофеев Г.А., Лубнин А.Н., Ульянов А.Л., Мухгалин В.В. // Изв. РАН. Сер. физ. 2017. Т. 81. № 7. С. 887. https://doi.org/10.7868/s0367676517070080
  19. Лубнин А.Н., Ладьянов В.И., Пушкарев Б.Е., Сапегина И.В., Файзуллин Р.Р., Трещёв С.Ю. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 5. С. 74. https://doi.org/10.31857/S1028096022050144
  20. Warren B.E. X-Ray Diffraction. Dover Publ., 1990. 400 p.
  21. Marcus R.B., Quigley S. // Thin Solid Films. 1968. V. 2. P. 467. https://doi.org/10.1016/0040-6090(68)90060-6
  22. Janish M.T., Mook W.M., Carter C.B. // Scr. Mater. 2015. V. 96. P. 21. https://doi.org/10.1016/j.scriptamat.2014.10.010
  23. Haas G., Thun R.E. Physics of Thin Films: Advances in Research and Development. New York: Academic Press, 1963. 421 p.
  24. Wang F., Ingalls R. // Phys. Rev. B. 1998. V. 57. P. 5647. https://doi.org/10.1103/PhysRevB.57.5647
  25. Mao H.K., Bassett W.A., Takahashi T. // J. Appl. Phys. 1967. V. 38. P. 272. https://doi.org/10.1063/1.1708965
  26. Basset W.A., Huang E. // Nature. 1986. V. 8. P. 2. https://doi.org/10.1126/science.238.4828.780
  27. Burgers W.G. // Physica. 1934. V. 1. P. 561. https://doi.org/10.1016/S0031-8914(34)80244-3

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. SEM images of tantalum coatings obtained by chemical vapor deposition at 800°C and high (a), medium (b) and low (c) helium concentrations y, at low y and 750 (d), 700 (d) and 650°C (e).

Baixar (75KB)
3. Fig. 2. Content of carbon, nitrogen and oxygen in tantalum coatings obtained by chemical vapor deposition at different temperatures and helium concentrations y. Relative errors in determining concentrations do not exceed 20%.

Baixar (12KB)
4. Fig. 3. X-ray diffraction patterns of tantalum coatings obtained by chemical vapor deposition at 800°C and high (a), medium (b) and low (c) helium concentrations.

Baixar (53KB)
5. Fig. 4. X-ray diffraction patterns of tantalum coatings obtained by chemical vapor deposition at a low helium concentration and at a temperature of: a — 750; b — 700; c — 650°C.

Baixar (54KB)
6. Fig. 5. Williamson–Hall plot for bcc tantalum obtained by chemical vapor deposition at 800°C and medium helium concentration y (□), 750°C and low y (○), 800°C and low y (£). Errors in the plot do not exceed the sizes of the dots.

Baixar (16KB)
7. Fig. 6. Scratch test of tantalum coatings obtained by chemical vapor deposition at 800°C and high (a), medium (b) and low (c) helium concentrations y, at low y and 750 (d), 700 (d) and 650°C (e).

Baixar (74KB)
8. Fig. 7. Polarization curves of tantalum coatings obtained by chemical vapor deposition at 800°C and high (1), medium (2) and low (3) helium concentrations y, at low y and 750 (4), 700 (5) and 650°C (6), as well as tantalum (7) and an uncoated copper substrate (8). The shooting environment was 0.5 M H2SO4.

Baixar (26KB)
9. Fig. 8. Results of electrochemical tests in 0.5 M H2SO4 solution of tantalum coatings depending on the conditions of their deposition (temperature and helium content y): icor and Ecor are the current density and corrosion potential, respectively. Data for pure metals Cu and Ta are also given. Relative errors in determining icor and Ecor do not exceed 15%.

Baixar (13KB)
10. Fig. 9. Schematic diagram of the mechanism of the BCC → HCP phase transformation: a — projection of the initial structure with a BCC lattice onto the (112) plane; b — structure modified due to a stacking fault on the (112) plane, as well as compression in the [100] direction with simultaneous stretching along the [110] direction; c — structure of the resulting HCP phase.

Baixar (27KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024