Effect of О2+ Ion Implantation on the Elemental and Chemical Composition of the Si(111) Surface

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Using the methods of secondary ion mass spectrometry, elastic peak electron spectroscopy and Auger electron spectroscopy, the elemental and chemical composition of the surface, concentration profiles of the distribution of atoms over the depth of silicon implanted with O2+ ions with energy E0 = 1 keV at a dose of D = 6 × 1016 cm–2 were studied. It was found that oxides and suboxides of Si (SiO2, Si2O and SiO0.5) were formed in the ion-doped layer, and it also contained unbound O and Si atoms. Post-implantation annealing at 850–900 K led to the formation of a stoichiometric SiO2 layer ~25–30 Å thick.

Texto integral

Acesso é fechado

Sobre autores

G. Allayarova

Karshi State University

Autor responsável pela correspondência
Email: allayarova5030@mail.ru
Uzbequistão, Karshi

B. Umirzakov

Таshkent State Technical University

Email: allayarova5030@mail.ru
Uzbequistão, Таshkent

A. Tashatov

Karshi State University

Email: allayarova5030@mail.ru
Uzbequistão, Karshi

Bibliografia

  1. Демидов Е.С., Михайлов А.Н., Белов А.И., Карзанова М.В., Демидова Н.Е., Чигиринский Ю.И., Шушунов А.Н., Тетельбаум Д.И., Горшков О.Н., Европейцев Е.А. // ФТТ. 2011. Т. 53. Вып. 12. С. 2294. http://journals.ioffe.ru/articles/1645
  2. Громов Д.Г., Пятилова О.В., Булярский С.В., Белов А.Н., Раскин А.А. // ФТТ. 2013. Т. 55. Вып. 3. С. 562. http://journals.ioffe.ru/articles/973
  3. Hoppe K., Fahrner W.R., Fink D., Dhamodoran S., Pe- trov A., Chandra A., Saad A., Faupel F., Chak-ravadhanula V.S.K., Zaporotchenko V. // Nucl. Instrum. Methods Phys. Res. B. 2008. V. 266. № 8. P. 1642. https://doi.org/10.1016/j.nimb.2007.12.069
  4. Rochet F., Dufour G., Roulet H., Pelloie B., Perriere J., Fogarassy E., Slaoui A., Froment M. // Phys. Rev. B. 1988. V. 37. № 11. P. 6468. https://doi.org/10.1103/PhysRevB.37.6468
  5. Takeoka S., Fujii M., Hayashi S. // Phys. Rev. B. 2000. V. 62. № 24. P. 16820. https://doi.org/10.1103/PhysRevB.62.16820
  6. Krishnan R., Xie Q., Kulik J., Wang X.D., Lu S., Molinari M., Gao Y., Krauss T.D., Fauchet P.M. // J. Appl. Phys. 2004.V. 96. № 1. P. 654. https://doi.org/10.1063/1.1751632
  7. Ундалов Ю.К., Теруков Е.И. // ФТП. 2015. Т. 49. Вып. 7. С. 887. http://journals.ioffe.ru/articles/41958
  8. Зинченко В.Ф., Лаврентьев К.В., Емелянов В.В., Емельянов В.В., Ватуев А.С. // ЖТФ. 2016. Т. 86. Вып. 2. С. 30.
  9. Гусев О.Б. // ФТП. 2013. Т. 47. Вып. 2. С. 147.
  10. Allayarova G.X. // J. Surf. Invest. X-Ray, Synchrotron Neutron Tech. 2022. V. 16. № 6. P. 1171. https://doi.org/10.1134/S1027451022060039
  11. Umirzakov B.E., Tashmukhamedova D.A., Gulyamova S.T., Allayarova G.X. // Tech. Phys. 2020. V. 65. № 5. P. 795. https://doi.org/10.1134/S1063784220050242
  12. Tashmukhamedova D.A., Yusupjanova M.B., Allayarova G.X., Umirzakov B.E. // Tech. Phys. 2020. V. 46. № 10. P. 972. https://link.springer.com/article/10.1134/S106378 5020100144
  13. Umirzakov B.E., Tashmukhamedova D.A., Ruzibae- va M.K., DjurabekovaF.G., Danaev S.B. // Nucl. Instrum. Methods Phys. Res. B. 2014. V. 326. P. 322.
  14. Umirzakov B.E., Tashmuxamedova D.A., Boltaev K.K., Dzhurakhalov A.A. // Mater. Sci. Engin. 2003. V. 101. P. 124. https://www.sciencedirect.com/science/article/pii/S0168583X14001670
  15. Tashmukhamedova D.A., Yusupjanova M., Allayaro- va G.Kh., Umirzakov B.E. // Tech. Phys. Lett. 2020. V. 46. № 10. P. 972. https://doi.org/10.1134/S1063785020100144
  16. Соболев Н.А., Калядин А.Е., Штельмах К.Ф., Шек Е.И. // ФТП. 2021. Т. 55. Вып. 10. С. 928. https://doi.org/10.21883/FTP.2021.10.51446.9694
  17. Stepanov A.L., Nuzhdin V.I., Valeev V.F., Vorobev V.V., Kavetskyy T.S., Osin Y.N. // Rev. Adv. Mater. Sci. 2015. V. 40. P. 155.
  18. Christian R., Frank F., Ralph M. // J. Appl. Phys. 2015. V. 118. P. 205701. https://doi.org/10.1063/1.4936223
  19. Умирзаков Б.Е., Ташмухамедова Д.А. // Журн. технической физики. 2013. Т. 83. Вып. 6. C. 66. https://doi.org/10.52304/.v22i3.153

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The design of an ion gun for creating a beam of gas ions: 1 – filament; 2 – anode; 3 – diaphragm system; 4-6 – focusing and accelerating electrodes

Baixar (107KB)
3. Fig. 2. The mass spectrum of Si implanted with O2+ ions with E0 = 1 keV at D = 6 × 1016 cm–2, measured by bombardment with Cs+ ions with E0 = 6.7 keV

Baixar (115KB)
4. Fig. 3. Spectra of elastically reflected L23VV Si electrons: 1 – pure; 2 – after implantation of O2+ ions with E0 = 1 keV and D = 6 × 1016 cm–2, 3 – after annealing at 900 K for 30 min

Baixar (75KB)
5. Fig. 4. Dependences of the concentration of oxygen atoms CO(d) for Si implanted with O2+ ions with E0 = 1 keV: 1 – total concentration; 2 – in SiO2 oxide; 3 – in the compound SiOx(SiO + SiO0.5)

Baixar (49KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024