Analysis of Crystalline Phases of Electroactive Forms of Copolymer Composite of Polyvinylidene Fluoride and Tetrafluoroethylene with Nanographite

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of the crystallization conditions of vinylidene fluoride (VDF) copolymer with tetrafluoroethylene (TFE) (F-42) from aprotic solvents dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) under isothermal conditions at 60, 90, 150°C on the phase composition of the films was studied. The content of crystalline phases in F-42 films was studied using Fourier infrared spectroscopy, Raman spectroscopy, and X-ray phase analysis. The effect of filling copolymer films with nanographite on crystallinity phases was investigated. Filling with nanographite changes the crystal structure of polymer piezoelectric films and their piezoelectric properties, forming high-content electroactive β- and γ-phases during crystallization from 5 wt% solutions of aprotic solvents. Some features of the analysis of the content of crystalline allotropic phases by the above methods were found. The total content of crystalline electroactive phases of the VDF/TFE copolymer during isothermal crystallization from DMSO and DMF was 96–98%, while the content of the β-phase was 75–80%.

Texto integral

Acesso é fechado

Sobre autores

V. Bachurin

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Autor responsável pela correspondência
Email: vibachurin@mail.ru
Rússia, Yaroslavl, 150067

N. Savinsky

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: vibachurin@mail.ru
Rússia, Yaroslavl, 150067

A. Khramov

Demidov Yaroslavl State University

Email: artem.khramov.99.99@mail.ru
Rússia, Yaroslavl, 150003

M. Smirnova

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: vibachurin@mail.ru
Rússia, Yaroslavl, 150067

R. Selyukov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: vibachurin@mail.ru
Rússia, Yaroslavl, 150067

Bibliografia

  1. Наумова О.В., Генералов В.М., Зайцева Э.Г., Латышев А.В., Асеев А.Л., Пьянков С.А., Сафатов А.С. // Микроэлектроника. 2021. Т. 50. С. 166. https://doi.org/10.31857/S0544126921030066
  2. Weinhold S., Litt M.H., Lando J.B. // Macromolecules. 1980. V. 13. P. 1178. https://doi.org/10.1063/1.327425
  3. Bužarovska A., Kubin M., Makreski P., Zanoni M., Gasperini L., Selleri G., GualandiС. // J. Polymer Res. 2022. V. 29. № 7. P. 272. https://doi.org/10.1007/s10965-022-03133-z
  4. Singh P., Borkar H., Singh B.P., Singh V.N., Kumar A. // AIP Adv. 2014. V. 4. № 8. P. 4. https://doi.org/10.1063/1.4892961
  5. Guo S., Duan X., Xie M., Aw K.C., Xue Q. // Micromachines. 2020. V. 11. P. 1076. https://doi.org/10.20944/preprints202011.0262.v1
  6. Liu Y., Aziguli H., Zhang B., Xu W., Lu W., Bernholc J., Wang, Q. // Nature. 2018. V. 562. № 7725. P. 96. https://doi.org/10.1038/s41586-018-0550-z
  7. Ramaiah N., Raja V., Ramu C. // Oriental J. Chem. 2021. V. 37. № 5. P. 1. https://doi.org/10.13005/ojc/370513
  8. Guo S., Duan X., Xie M., Aw K.C., Xue Q.G. // Micromachines. 2020. V. 11. P. 1076. https://doi.org/10.3390/mi11121076
  9. Davis G.T., McKinney J.E., Broadhurst M.G., Roth S. // J. Appl. Phys. 1978. V. 49. P. 4998. https://doi.org/10.1063/1.324446
  10. Grushevski E., Savelev D., Mazaletski L., Savinski N., Puhov D. // J. Phys. Conf. Ser. 2021. V. 2086. P. 012014. https://doi.org/10.1088/1742-6596/2086/1/012014
  11. Furukawa T. // Phase Transitions: A Multinational J. 1989. V. 18. P. 143. https://doi.org/10.1080/01411598908206863
  12. Живулин В.Е., Хайранов Р.Х., Злобина Н.А., Песин Л.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 11. С. 36. https://doi.org/10.31857/S1028096020110175
  13. Живулин В.Е., Евсюков С.Е., Чалов Д.А., Морилова В.М., Андрейчук В.П., Хайранов Р.Х., Маргамов И.Г., Песин Л.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 9. С. 3. https://doi.org/10.31857/S1028096022090217
  14. Тарасов А.В. Взаимодействие фторполимера (сополимера тетрафторэтилена и винилиденфторида) с переходными металлами (Ta, Nb, Ti, W, Mo, Re): Автореф. дис. … канд. хим. наук: 02.00.04. М.: ИОНХ, 2010. 119 с.
  15. Gregorio J.R., Cestari M. // J. Polymer Sci. B. 1994. V. 32. № 5. P. 859. https://doi.org/10.1002/polb.1994.0903205
  16. Benz M., Euler W.B. // J. Аppl. Рolymer. Sci. 2003. V. 89. P. 1093. https://doi.org/10.1002/app.12267
  17. Shaik H., Rachith S.N., Rudresh K.J., Sheik A.S., Raman K.H.T., Kondaiah P., Mohan G. // J. Polym. Res. 2017. V. 24. Р. 1. https://doi.org/10.1007/s10965-017-1191-x
  18. Li X., Wang Y., He1 T., Hu Q., Yang Y. // J. Mater. Sci.: Mater. Electronics. 2019. V. 30. Р. 20174. https://doi.org/10.1007/s10854-019-02400-y
  19. Li Y., Xu J.Z., Zhu L., Zhong G.J., Li Z.M. // J. Phys. Chem. B. 2012. V. 116. P. 14951. https://doi.org/10.1021/jp3087607
  20. Cai X., Lei T., Sun D., Lin L. // RSC Adv. 2017. V. 7. P. 15382. https://doi.org/10.1039/c7ra01267e
  21. Li X., Wang Y., He T., Hu Q., Yang Y. // J. Mater. Sci.: Mater. Electronics. 2019. V. 30. P. 20174. https://doi.org/0.1007/s10854-019-02400-y
  22. Chen C., Cai F., Zhu Y., Liao L., Qian J., Yuan F.G., Zhang N. // Smart Mater. Struct. 2019. V. 28. P. 065017. https://doi.org/10.1088/1361-665X/ab15b7
  23. Vasic N., Steinmetz J., Görke M., Sinapius M., Hühne C., Garnweitner G. // Polymers. 2021. V. 13. P. 3900. https://doi.org/10.3390/polym13223900
  24. BoccaccioT., BottinoA., CapannelliG., PiaggioP. // J. Membrane Sci. 2002. V. 210. P. 315. https://doi.org/10.1016/s0376-7388(02)00407-6
  25. Simoes R.D., Job A.E., Chinaglia D.L., Zucolotto V., Camargo‐Filho J.C., Alves N., Constantino C.J.L. // J. Raman Spectrosc. 2005. V. 36. P. 1118. https://doi.org/10.1002/jrs.1416
  26. Ueda A., Ali O., Zavalin A., Avanesyan S., Collins W.E. // Biosensors and Bioelectronics Open Access. 2018. V. 2018. P. BBOA-111. https://doi.org/10.29011/BBOA-111.100011
  27. Kobayashi M., Tashiro K., Tadokoro H. // Macromolecules. 1975. V. 8. P. 158. https://doi.org/10.1021/ma60044a013
  28. Miranda T., Riosbaasa V., Lohb K.J., O’Bryanc G., Loyola B.R. // Proc. SPIE. 2014. V. 9061. P. 235. https://doi.org/10.1117/12.2045430
  29. Chapron D., Rault F., Talbourdet A., Lemort G., Cochrane C., Bourson P., Devaux E., Campagne C. // J. Raman Spectrosc. 2021. https://doi.org/10.1002/jrs.6081. HAL Id: hal-03163716. https://hal.univ-lorraine.fr/hal-03163716
  30. Job A.E., Simoes R.D., J.A. Giacometti J.A., Zucolotto V., Oliveira O.N., Gozzi J.G., Chinaglia D.L., Constantino C.J.L. // Appl. Spectrosc. 2005. V. 59. P. 275. https://doi.org/10.1366/000370205358533
  31. Кочервинский В.В., Сульянов С.Н. // ФТТ. 2006. Т. 48. С. 1016. http://journals.ioffe.ru/articles/viewPDF/3441
  32. Кочервинский В.В., Малышкина И.А., Воробьев Д.В., Бессонова Н.П. // ФТТ. 2010. Т. 52. С. 1841. http://journals.ioffe.ru/articles/viewPDF/1979
  33. Кочервинский В.В. // Russ. Chem. Rev. 1996. V. 65. P. 865. https://doi.org/ 10.1070/RC1996v065n10ABEH000328
  34. Кочервинский В.В., Мурашева Е.М. // Высоком. соединения. А. 1991. Т. 33. № 10. С. 2096.
  35. Кочервинский В.В., Киселев Д.А., Малинкович М.Д., Павлов А.С., Козлова Н.В., Шмакова Н.А. // Высокомол. соединения. А. 2014. Т. 56. С. 53. https://doi.org/10.7868/S2308112014010064

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. FT-IR spectra of F-42 samples crystallised at 60°C from solution: DMSO/F-42 (1); DMSO/F-42 (2); DMSO/F-42-nanographite (3); DMSO/F-42-nanographite (4).

Baixar (167KB)
3. Fig. 2. CPC spectrum of F-42 powder.

Baixar (163KB)
4. Fig. 3. CPC spectrum of F-42 film crystallised from 5 wt% F-42 in DMSO with the addition of 5 wt% nanographite at 60°C for 72 h after the spectral response separation procedure.

Baixar (169KB)
5. Fig. 4. XRD spectrum of the underside of a sample film crystallised from 5 wt% F-42 filled with 5 wt% nanographite at 60 °C for 72 h from DMSO solution. Two D peaks (band around 1340 cm-1) and a G-band around 1570 cm-1 are observed in the spectrum.

Baixar (80KB)
6. Fig. 5. SEM image of the surface of the F-42 film sample filled with 5 wt% nanographite.

Baixar (347KB)
7. Fig. 6. Diffractogram of a sample of initial F-42 powder after the peak separation procedure.

Baixar (156KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024