The gradient structure formation upon crystallization of deformed Al87Ni6Nd7 amorphous alloy

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The influence of plastic deformation on the formation of nanocrystals in the Al87Ni6Nd7 amorphous alloy was studied using X-ray diffraction analysis. It has been shown that deformation accelerates the crystallization of the amorphous phase and can lead to the formation of smaller nanocrystals compared to heat treatment. The size of nanocrystals and their number depend on the treatment conditions of the amorphous phase: when preliminary deformation is used, the size of nanocrystals formed during annealing is smaller than in an undeformed sample. In samples subjected to preliminary deformation by rolling, a gradient structure is formed: the proportion of nanocrystals decreases with distance from the surface into the depth of the sample. The size of nanocrystals changes slightly with changing distance from the sample surface. The results show that preliminary plastic deformation can be an effective method to obtain a nanocrystalline structure with different fraction and sizes of nanocrystals in the amorphous phase. This is important for the creation of highly functional materials with outstanding physicochemical properties. The results obtained significantly expand the existing understanding of the mechanisms of formation of nanocrystals in the amorphous phase under external influences.

Авторлар туралы

P. Uzhakin

Osipyan Institute of Solid State Physics RAS

Хат алмасуға жауапты Автор.
Email: uzhakin@issp.ac.ru
Ресей, Chernogolovka

V. Chirkova

Osipyan Institute of Solid State Physics RAS

Email: uzhakin@issp.ac.ru
Ресей, Chernogolovka

N. Volkov

Osipyan Institute of Solid State Physics RAS

Email: uzhakin@issp.ac.ru
Ресей, ChernogolovkaChernogolovka

G. Abrosimova

Osipyan Institute of Solid State Physics RAS

Email: gea@issp.ac.ru
Ресей, Chernogolovka

Әдебиет тізімі

  1. Ashby M.F., Greer A. // Scr. Mater. 2004. V. 54. № 3. P. 321. https://doi.org/10.1016/j.scriptamat.2005.09.051
  2. Herzer G. // J. Magn. Magn. Mater. 2005. V. 294. № 2. P. 99. https://doi.org/10.1016/j.jmmm.2005.03.020
  3. Krasovskii M. // Mater. Lett. 2019. V. 239. P. 113. https://doi.org/10.1016/j.matlet.2018.12.090
  4. Abrosimova G., Matveev D., Pershina E., Aronin A. // Mater. Lett. 2016. V. 183. P. 131. https://doi.org/10.1016/j.matlet.2016.07.053
  5. Aronin A., Matveev D., Pershina E., Tkatch V., Abrosimova G. // J. Alloys Compd. 2017. V. 715. P. 176. https://doi.org/10.1016/j.jallcom.2017.04.305
  6. Cremashi V., Arcondo B., Sirkin H., Vazquez M., Asenjo F., Garcia J.M., Abrosimova G., Aronin A. // J. Mater. Res. 2000. V. 15. № 9. P. 1936. https://doi.org/10.1557/JMR.2000.0279
  7. Gutzow I., Toschev S., The Kinetics of Nucleation and the Formation of Glass Ceramics. // Advances in Nucleation and Crystallization of Glasses. / Ed. Hench L.L., Frieman S.W. American Ceramic Society, 1971. P. 10.
  8. Ohta M., Yoshizawa Y. // Appl. Phys. Lett. 2007. V. 91. № 6. P. 062517. https://doi.org/10.1063/1.2769956
  9. Suzuki K., Makino A., Kataoka N., Inoue A., Masumoto T. // Mater. Trans. JIM. 1991. V. 32. № 1. P. 93. https://doi.org/10.2320/matertrans1989.32.93
  10. Makino A., Inoue A., Masumoto T. // Nanostruct. Mater. 1995. V. 6. № 5. P. 985. https://doi.org/10.1016/0965-9773(95)00226-X
  11. Greer A.L. // Mater. Sci. Eng. A 2001. V. 304–306. P. 68. https://doi.org/10.1016/S0921-5093(00)01449-0
  12. Hall E.O. // Proc. Phys. Soc. London Sect. B. 1951. V. 64. P. 747. https://doi.org/10.1088/0370-1301/64/9/303
  13. Petch N.J. // J. Iron Steel Inst. 1953. V. 174. P. 25.
  14. Аронин А.С., Иванов С.А., Якшин А.Е. // ФТТ 1991. V. 33. № 9. P. 2527.
  15. Aronin A.S., Abrosimova G.E., Zver’kova I.I., Lang D., Luck R. // J. Non-Cryst. Solids 1996. V. 208. № 1–2. P. 139. https://doi.org/10.1016/S0022-3093(96)00505-4
  16. Aronin A.S. // Nanostr. Mater. 1997. V. 8. № 2. P. 171. https://doi.org/10.1016/S0965-9773(97)00008-1
  17. Ubyivovk E.V., Boltynjuk E.V., Gunderov D.V., Churakova A.A., Kilmametov A.R., Valiev R.Z. // Mater. Lett. 2017. V. 209. P. 327. https://doi.org/10.1016/j.matlet.2017.08.028
  18. Hebert R.J., Perepezko J.H., Rösner H., Wilde G. // Beilstein J. Nanotechnol. 2016. V. 7. P. 1428. https://doi.org/10.3762/bjnano.7.134
  19. Boucharat N., Hebert R., Rösner H., Valiev R., Wilde G. // Scr. Mater. 2005. V. 53. № 7. P. 823. https://doi.org/10.1016/j.scriptamat.2005.06.004
  20. Maaß R., Samwer K., Arnold W., Volkert C.A. // Appl. Phys. Lett. 2014. V. 105. № 17. P. 171902. https://doi.org/10.1063/1.4900791
  21. Rösner H., Peterlechner M., Kübel C., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. № 7. P. 1. https://doi.org/10.1016/j.ultramic.2014.03.006
  22. Şopu D., Scudino S., Bian X.L., Gammer C., Eckert J. // Scr. Mater. 2020. V. 178. P. 57. https://doi.org/10.1016/j.scriptamat.2019.11.006
  23. Wilde G., Rösner H. // Appl. Phys. Lett. 2011. V. 98. № 25. P. 251904. https://doi.org/10.1063/1.3602315
  24. Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Mater. 2017. V. 140. P. 206. https://doi.org/10.1016/j.actamat.2017.08.032
  25. Aronin A.S., Louzguine-Luzgin D.V. // Mech. Mater. 2017. V. 113. P. 19. https://doi.org/10.1016/j.mechmat.2017.07.007
  26. Hassanpour A., Vaidya M., Divinski S.V., Wilde G. // Acta Mater. 2021. V. 209. P. 116785. https://doi.org/10.1016/j.actamat.2021.116785
  27. Greer A.L., Cheng Y.Q., Ma E. // Mater. Sci. Eng. R Rep. 2013. V. 74. № 4. P. 71. https://doi.org/10.1016/j.mser.2013.04.001
  28. Anghelus A., Avettand-Fenoel M.-N., Cordier C., Taillard R. // J. Alloys Compd. 2015. V. 651. P. 454. https://doi.org/10.1016/j.jallcom.2015.08.102
  29. Du S.Z., Li C.C., Pang S.Y., Leng J.F., Geng H.R. // Mater. Des. 2013. V. 47. P. 358. https://doi.org/10.1016/j.matdes.2012.12.002
  30. Rizzi P., Battezzati P. // J.Non-Cryst. Solids 2004. V. 344. № 1–2. P. 94. https://doi.org/10.1016/j.jnoncrysol.2004.07.022
  31. Бабичев А.П., Бабушкина Н.А., Братковский А.М., Бродов М.Е., Быстров М.В., Виноградов Б.В., Винокурова Л.И., Гельмак Э.Б., Геппе А.П., Григорьев И.С., Гуртовой К.Г., Егоров В.С., Елецкий А.В., Зарембо Л.К., Иванов В.Ю., Ивашинцева В.Л., Игнатьев В.В. и др. Физические величины. Справочник. М.: Энергоатомиздат, 1991. 1232 с.
  32. Бойчишин Д., Ковбуз М., Герцик О., Носенко В., Котур Б. // ФТТ 2013. V. 55. № 2. С. 209. https://journals.ioffe.ru/articles/viewPDF/914
  33. Ужакин П.А., Чиркова В.В., Волков Н.А., Абросимова Г.Е. // ФТТ 2024. Т. 66. № 1. С. 8. https://journals.ioffe.ru/articles/56928
  34. Abrosimova G., Matveev D., Pershina E., Aronin A. // Mater. Lett. 2016. V. 183. P. 131. https://doi.org/10.1016/j.matlet.2016.07.053
  35. Abrosimova G., Gunderov D., Postnova E., Aronin A. // Materials 2023. V. 16. № 3. P. 1321. https://doi.org/10.3390/ma16031321
  36. Abrosimova G., Chirkova V., Volkov N., Straumal B., Aronin A. // Coatings 2024. V. 14. № 1. P. 116. https://doi.org/10.3390/ coatings14010116

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024