Theoretical study of electron exchange under grazing scattering on thin metal films
- Авторлар: Gainullin I.K.1
-
Мекемелер:
- Lomonosov Moscow State University
- Шығарылым: № 10 (2024)
- Беттер: 87-93
- Бөлім: Articles
- URL: https://archivog.com/1028-0960/article/view/664737
- DOI: https://doi.org/10.31857/S1028096024100116
- EDN: https://elibrary.ru/SGYOKN
- ID: 664737
Дәйексөз келтіру
Аннотация
Electron exchange during grazing scattering of hydrogen ions on thin metal films is considered. The main characteristic being studied is the yield fraction, i.e. the probability of the formation of a certain charge state of a scattered particle (in the case under consideration, H–) as a function of the velocity component parallel to the surface of the sample. Based on an analysis of the electron distribution in the space of wave vectors, using the generally accepted model of displacement of Fermi spheres, it was shown that the dependence of the probability of the formation of a negative hydrogen ion on the parallel velocity component should decrease monotonically.
Авторлар туралы
I. Gainullin
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: ivan.gainullin@physics.msu.ru
Ресей, Moscow
Әдебиет тізімі
- Martynenko Yu. V. // Sov. Phys. Solid State. 1964. V. 3529. P. 2003.
- Yurasova V.E., Chernysh V.S., Kuvakin M.V., Shelyakin L.B. // JETP Lett. 1975. V. 21. № 3. P. 79.
- Xiao Y., Shi Y., Liu P., Zhu Y., Gao L., Guo Y., Chen L., Chen X., Esaulov V. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 450. P. 73. http://doi.org/10.1016/j.nimb.2018.11.022
- Mamedov N.V., Mamedov I.M. // Bull. Russ. Acad. Sci.: Phys. 2020. V. 84. P. 713. http://doi.org/10.3103/S1062873820060155
- Balakshin Y.V., Kozhemiako A.V., Evseev A.P., Minnebaev D.K., Elsehly E.M. // Moscow University Phys. Bull. 2020. V. 75. Р. 218. http://doi.org/10.3103/S0027134920030030
- Shemukhin A.A., Smirnov A.M., Evseev A.P., Vorobyeva E.A., Kozhemiako A.V., Minnebaev D.K., Balakshin Y.V., Nazarov A.V., Chernysh V.S. // Moscow University Phys. Bull. 2020. V. 75. P. 133. http://doi.org/10.3103/S0027134920020113
- Tolstogouzov A., Daolio S., Pagura C. // Surf. Sci. 1999. V. 441. P. 213. http://doi.org/10.1016/S0039-6028(99)00881-X
- Elovikov S.S., Zykova E.Yu., Mosunov A.S. et al. // Bull. Russ. Acad. Sci. Phys. 2002. V. 66. P. 558.
- Bogomolova L.D., Borisov A.M., Kurnaev V.A., Mashkova E.S. // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 212. P. 164. http://doi.org/10.1016/S0168-583X(03)01730-0
- Zinoviev A.N., Babenko P.Y., Meluzova D.S., Shergin A.P. // JETP Lett. 2018. V. 108. P. 633. http://doi.org/10.1134/S0021364018210154
- Los J., Geerlings J.J.C. // Phys. Rep. 1990. V. 190. P. 133.
- Karaseov P.A., Karabeshkin K.V., Titov A.I., Shilov V.B., Ermolaeva G.M., Maslov V.G., Orlova A.O. // Semiconductors. 2014. V. 48. № 4. P. 446. http://doi.org/10.1134/S1063782614040125
- Andrianova N.N., Borisov A.M., Mashkova E.S., Shulga V.I. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2016. V. 10. P. 412. http://doi.org/10.1134/S1027451016020233
- Zykova E.Y., Khaidarov A.A., Ivanenko I.P., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2012. V. 6. P. 877. http://doi.org/10.1134/S102745101211016X
- Gainullin I.K. // Surf. Sci. 2019. V. 681. P. 158. http://doi.org/10.1016/j.susc.2018.11.003
- Gainullin I.K. // Physics-Uspekhi. 2020. V. 63. № 9. http://doi.org/10.3367/UFNe.2019.11.038691
- Gainullin I. K // Surf. Sci. 2018. V. 677. P. 324. http://doi.org/10.1016/j.susc.2018.08.007
- Winter H. // Phys. Rep. 2002. V. 367. P. 387. http://doi.org/10.1016/S0370-1573(02)00010-8
- Liu P., Gainullin I.K., Esaulov V.A. et al. // Phys. Rev. A. 2020. V. 101. P. 032706. http://doi.org/10.1103/PhysRevA.101.032706
- Shi Y., Yin L., Ding B. et al. // Phys. Rev. A. 2022. V. 105. P. 042807. http://doi.org/10.1103/PhysRevA.105.042807
- Van Wunnik J.N.M., Brako R., Makoshi K., Newns D.M. // Surf. Sci. 1983. V. 126. № 1–3. P. 618.
- Borisov A.G., Winter H. // Nucl. Instrum. Methods Phys. Res. B. 1996. V. 115. № 1–4. P. 1425. http://doi.org/10.1016/0168-583X(96)01518-2
- Усман Е.Ю., Гайнуллин И.К., Уразгильдин И.Ф. // Вестн. Моск. ун-та. 2005. № 2. С. 23.
- Amanbaev E.R., Shestakov D.K., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2009. V. 3. P. 865. http://doi.org/10.1134/S1027451009060032
- Magunov A.A., Shestakov D.K., Gainullin I.K., Urazgil’din I.F. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2008. V. 2. P. 764. http://doi.org/10.1134/S1027451008050170
- Shestakov D.K., Polivnikova T.Yu., Gainullin I.K., Urazgildin I.F. // Nucl. Instrum. Methods Phys. Res. B. 2009. V. 267. P. 2596. http://doi.org/10.1016/j.nimb.2009.05.043
- Gainullin I.K., Urazgildin I.F. // Phys. Rev. B. 2006. V. 74. P. 205403. http://doi.org/10.1103/PhysRevB.74.205403
- Souda R., Ayzawa T., Hayami W., Otani S., Ishizawa Y. // Phys. Rev. B. 1990. V. 42. P. 7761. http://doi.org/10.1103/PhysRevB.42.7761
- Amanbaev E.R., Gainullin I.K., Zykova E.Yu., Urazgildin I.F. // Thin Solid Films. 2011. V. 519. P. 4737. http://doi.org/10.1016/j.tsf.2011.01.026
- Gainullin I.K. // Phys. Rev. A. 2019. V. 100. P. 032712. http://doi.org/10.1103/PhysRevA.100.032712
- Canário , Borisov , Gauyacq , Esaulov // Phys. Rev. B. 2005. V. 71. № 12. P. 121401. http://doi.org/10.1103/PhysRevB.71.121401
- Gainullin I.K., Usman E.Yu., Song Y.W., Urazgil’din I.F. // Vacuum. 2003. V. 72. P. 263. http://doi.org/10.1016/j.vacuum.2003.07.001
- Usman E.Yu., Urazgil’din I.F., BorisovA.G., Gauyacq J.P. // Phys. Rev. B. 2001. V. 64. P. 205405. http://doi.org/10.1103/PhysRevB.64.205405
- Gainullin I.K., Usman E.Y., Urazgil’din I.F. // Nucl. Instrum. Methods Phys. Res. B. 2005. V. 232. P. 22. http://doi.org/10.1016/j.nimb.2005.03.019
- Moskalenko S.S., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 17. P. 299. http://doi.org/10.1134/S1027451022060155
- Obreshkov B., Thumm U. // Phys. Rev. A. 2013. V. 87. P. 022903. http://doi.org/10.1103/PhysRevA.87.022903
- Melkozerova J.A., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 12. P. 1175. http://doi.org/10.1134/S1027451022060143
- Gao L., Zhu Y., Shi Y., Liu P., Xiao Y., Li G., Liu Y., Esaulov V.A., Chen X., Chen L., Guo Y. // Phys. Rev. A. 2017. V. 96. P. 052705. http://doi.org/10.1103/PhysRevA.96.052705
- Klimov N.E., Gainullin I.K. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2023. V. 17. № 1. P. 72. http://doi.org/10.1134/S1027451023010123
- Shaw J., Zhang Y., Doerr D., Chakraborty H., Monismith D. // Phys. Rev. A. 2019. V. 98. P. 052705. http://doi.org/10.1103/PhysRevA.98.052705
- Shaw J., Monismith D., Zhang Y., Doerr D., Chakraborty H.S. // Atoms. 2020. V. 7. P. 89. http://doi.org/10.3390/atoms7030089
- Iglesias-García A., Romero M.A., García E.A., Goldberg E.C. // Phys. Rev. B. 2020. V. 102. P. 115406. http://doi.org/10.1103/PhysRevB.102.115406
- Gainullin I.K., Sonkin M.A. // Phys. Rev. A. 2015. V. 92. P. 022710. http://doi.org/10.1103/PhysRevA.92.022710
- Gainullin I.K. // Moscow University Phys. Bull. 2019. V. 74. P. 585. http://doi.org/10.3103/S0027134919060158
- Gainullin I.K. // Comp. Phys. Commun. 2017. V. 210. P. 72. http://doi.org/10.1016/j.cpc.2016.09.021
- Gainullin I.K., Sonkin M.A. // Comp. Phys. Commun. 2015. V. 188. P. 68. http://doi.org/10.1016/j.cpc.2014.11.005
- Gainullin I.K. // Phys. Rev. A. 2017. V. 95. P. 052705. http://doi.org/10.1103/PhysRevA.95.052705
- Gainullin I.K., Sonkin M.A. // Phys. Rev. A. 2015. V. 92. P. 022710. http://doi.org/10.1103/PhysRevA.92.022710
- Aleksandrov A.F., Gainullin I.K., Sonkin M.A. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2020. V. 14. P. 791. http://doi.org/10.1134/S1027451020040205
- Majorosi S., Czirják A. // Comp. Phys. Comm. 2016. V. 208. P. 9. http://doi.org/10.1016/j.cpc.2016.07.006
- Gainullin I.K., Klavsyuk A.L. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. P. 542. http://doi.org/10.3103/S1062873812050115
- Fu Y., Zeng J., Yuan J. // Comp. Phys. Commun. 2017. V. 210. P. 181. http://doi.org/10.1016/j.cpc.2016.09.016
- Gainullin I.K., Sonkin M.A. // Math. Models Comput. Simulations. 2019. V. 11. P. 964. http://doi.org/10.1134/S2070048219060048
- Lüdde H.J., Horbatsch M., Kirchner T. // Eur. Phys. 2018. V. 91. P. 99. http://doi.org/10.1140/epjb/e2018-90165-x
- Zhou S.P., Liu A.H., Liu F.C., Wang C.C., Ding D.J. // Chin. Phys. B. 2019. V. 28. P. 083101. http://doi.org/10.1088/1674-1056/28/8/083101
- Liu Q., Liu F., Hou C. // Proc. Comput. Sci. 2020. V. 171. P. 312. http://doi.org/10.1016/j.procs.2020.04.032
- Cohen J.S., Fiorentini G. // Phys. Rev. A. 1986. V. 33. P. 1590.
- Jennings P.J., Jones R.O., Weinert M. // Phys. Rev. B. 1988. V. 37. P. 6113.
Қосымша файлдар
