Structure and magnetic properties of multilayer nanosystems based on thin films of cobalt and chromium-group metals deposited by magnetron method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In film nanostructures based on cobalt and buffer layers of chromium group metals formed by magnetron sputtering, features of the conductivity of buffer layers of various thicknesses and the magneto-optical response of cobalt films on tungsten were revealed. Analysis of electron microscopy data, X-ray phase analysis, and magneto-optical measurements indicates the specific structure and properties of tungsten films, the resistance of which depends on their thickness and is determined by the charge transfer between the crystallites. There is no magnetic anisotropy in nanostructures based on tungsten/cobalt layers.

About the authors

А. V. Prokaznikov

NRC Kurchatov Institute

Author for correspondence.
Email: prokaznikov@mail.ru

Valiev Institute of Physics and Technology RAS, Yaroslavl Branch

Russian Federation, Yaroslavl

V. А. Paporkov

Demidov Yaroslavl State University

Email: pva@uniyar.ac.ru
Russian Federation, Yaroslavl

R. V. Selyukov

NRC Kurchatov Institute

Email: prokaznikov@mail.ru

Valiev Institute of Physics and Technology RAS, Yaroslavl Branch

Russian Federation, Yaroslavl

S. V. Vasilev

NRC Kurchatov Institute

Email: prokaznikov@mail.ru

Valiev Institute of Physics and Technology RAS, Yaroslavl Branch

Russian Federation, Yaroslavl

О. V. Savenko

Demidov Yaroslavl State University

Email: prokaznikov@mail.ru
Russian Federation, Yaroslavl

References

  1. Merlo A., Leonard G. // Materials. 2021. V. 14. № 14. P. 3823. https://doi.org/10.3390/ma14143823
  2. Селюков Р.В., Изюмов М.О., Наумов В.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 8. С. 26. https://doi.org/10.31857/S1028096020080142
  3. Селюков Р.В., Наумов В.В., Изюмов М.О., Васильев С.В., Мазалецкий Л.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 2. С. 9. https://doi.org/10.31857/S1028096023020097
  4. Аверкиев И.К., Колотов А.А., Бакиева О.Р. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 3. С. 46. https://doi.org/10.31857/S1028096023030020
  5. Vüllers F.T.N., Spolenak R. // Thin Solid Films. 2015. V. 577. P. 26. https://doi.org/10.1016/j.tsf.2015.01.030
  6. Wang S.X., Taratorin A.M. Magnetic Information Storage Technology. London: Academic Press, 1999.
  7. Rotenberg E., Freelon B.K., Koh H., Bostwick A., Rossnagel K., Schmid A., Kevan S.D. // New J. Phys. 2005. V. 7. № 1. P. 114. https://doi.org/10.1088/1367-2630/7/1/114
  8. Abdelhameed A.H., Angloher G., Bauer P., Bento A., Bertoldo E.,·Canonica L., Fuchs D., Hauff D., et al. // J. Low Temp. Phys. 2020. V. 199. P. 407. https://doi.org/10.1007/s10909-020-02357-x
  9. Blundell S. Magnetism in Condensed Matter. Oxford, NY: Oxford University Press Inc, 2001.
  10. Mattheiss L.F. // Phys. Rev. 1965. V. 139. № 6A. P. A1893. https://doi.org/10.1103/PhysRev.139.A1893
  11. Булаевский Л.Н. // УФН. 1976. Т. 120. № 2. С. 259. https://doi.org/10.3367/UFNr.0120.197610c.0259
  12. Bouziane K., Mamor M., Meyer F. // Appl. Phys. A. 2005. V. 81. № 1. P. 209. https://doi.org/10.1007/s00339-004-2558-5
  13. Enss C. Cryogenic Particle Detection. Berlin–Heidelberg–NY: Springer, 2005.
  14. Buchin E.Yu., Vaganova E.I., Naumov V.V., Paporkov V.A., Prokaznikov A.V. // Tech. Phys. Lett. 2009. V. 35. № 7. P. 589. https://doi.org/10.1134/S1063785009070025
  15. Nagakubo A., Lee H.T., Ogi H., Moruyama T., Ono T. // Appl. Phys. Lett. 2020. V. 116. P. 021901. https://doi.org/10.1063/1.5131768
  16. Poulopoulos P., Grammatikopoulos S., Trachylis D., Bissas G., Dragatsikas I., Velgakis M.J., Politis C. // J. Surf. Interfaces Mater. 2015. V. 3. № 1. P. 52. https://doi.org/10.1166/jsim.2015.1077
  17. Miller A.M., Lemon M., Choffel M.A., Rich S.R., Harvel F., Johnson D.C. // Z. Naturforsch. B. 2022. V. 77. № 4–5. P. 313. https://doi.org/10.1515/znb-2022-0020
  18. Basaviah S., Pollak S. R. // J. Appl. Phys. 1968. V. 39. № 12. P. 5548. https://doi.org/10.1063/1.1656012
  19. Morcom W.R., Worrell W.L., Sell H. G., Kaplan H. I. // Metall. Trans. 1974. V. 5. P. 155. https://doi.org/10.1007/BF02642939
  20. Frank F.C., Kasper J.S. // Acta Crystallogr. 1959. V. 12. P. 483. https://doi.org/10.1107/S0365110X59001499
  21. Lassner E., Schubert W.-D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. New York: Kluwer Academic/Plenum Publishers, 1999.
  22. Li W., Fenton J.C., Wang Y., McComb D. W., Warburton P.A. // J. Appl. Phys. 2008. V. 104. № 9. P. 093913. https://doi.org/10.1063/1.3013444
  23. Nix W.D., Clemens B.M. // J. Mater. Res. 1999. V. 14. № 8. P. 4367. https://doi.org/10.1557/JMR.1999.0468
  24. Гантмахер В.Ф., Левинсон И.Б. Рассеяние носителей тока в металлах и полупроводниках. М.: Наука, 1984. 350 с.
  25. Selyukov R.V., Amirov I.I., Naumov V.V. // Russ. Microelectronics. 2022. V. 51. № 6. P. 488. https://doi.org/10.1134/S1063739722700081
  26. Lita E., Rosenberg D., Nam S., Miller A.J., Balzar D., Kaatz L. M., Schwall R. E. // IEEE Trans. Appl. Supercond. 2005. V. 15. № 2. P. 3528. https://doi.org/10.1109/TASC.2005.849033
  27. Fuchs K. // Math. Proc. Cambridge Phil. Soc. 1938. V. 34. № 1. P. 100. https://doi.org/10.1017/S0305004100019952
  28. Абрикосов А.А. Основы теории металлов. М.: Наука, 1987. 520 с.
  29. Boiko V.V., Gantmacher V.F., Gasparov V.A. // Sov. Phys. JETP. 1974. V. 38. № 3. P. 604.
  30. Desai P.D., Chu T.K., James H.M., Ho C.Y. // J. Phys. Chem. Ref. Data. 1984. V. 13. № 4. P. 1094. https://doi.org/10.1063/1.555723
  31. Lee J.-S., Cho J., You C.-Y. // J. Vac. Sci. Technol. A. 2016. V. 34. № 2. P. 021502. https://doi.org/10.1116/1.4936261
  32. Mayadas A.F., Shatzkes M. // Phys. Rev. 1970. V. 1. № 4. P. 1382. https://doi.org/10.1103/PhysRevB.1.1382

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences