The Potential of Liquid Glass Using for Smoothing the Surface of Optical Elements

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

It is proposed to use “liquid glasses” of different compositions as substrates for space-based X-ray optical elements. One of the main requirements for such materials is the smallest mass and the possibility of surface treatment. Special requirements are imposed on the surface roughness, which must be less than 1 nm, and the shape accuracy should be at the level of units of nanometers. It is proposed to use a class of compounds based on alkali metal silicates or strong organic bases as a material, which allows forming the required shape and roughness, as well as providing subsequent treatment. The effect of smoothing the surface roughness of liquid glasses of three different compositions deposited on chromium and nickel films has been studied. Before and after the deposition of the structures, the roughness of all surfaces has been studied using an atomic force microscope. The roughness has been calculated using the power spectral density function (PSD function). The structures deposited on the surface, were irradiated with accelerated argon ions with an energy of 800 eV. The etch depth and effective roughness have been measured. One of the studied compositions has demonstrated a satisfactory reduction in roughness and the stability of this effect during ion etching.

About the authors

М. S. Mikhaylenko

Institute of Physics of Microstructures RAS

Email: petrovadar@ipmras.ru
Russia, 603950, Nizhny Novgorod

М. V. Zorina

Institute of Physics of Microstructures RAS

Email: petrovadar@ipmras.ru
Russia, 603950, Nizhny Novgorod

D. V. Petrova

Institute of Physics of Microstructures RAS; Ivanovo State University of Chemistry and Technology; Institute of Solution Chemistry named G.A. Krestov RAS

Author for correspondence.
Email: petrovadar@ipmras.ru
Russia, 603950, Nizhny Novgorod; Russia, 153000, Ivanovo; Russia, 153045, Ivanovo

А. Е. Pestov

Institute of Physics of Microstructures RAS

Email: petrovadar@ipmras.ru
Russia, 603950, Nizhny Novgorod

I. L. Strulya

OAO Kompozit

Email: petrovadar@ipmras.ru
Russia, 140070, Korolev

N. I. Chkhalo

Institute of Physics of Microstructures RAS

Email: petrovadar@ipmras.ru
Russia, 603950, Nizhny Novgorod

References

  1. Born M., Wolf E. Principles of Optics. Cambridge: Cambridge University Press, 1999. 528 p.
  2. Chkhalo N.I., Mikhaylenko M.S., Mil’kov A.V., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Strulya I.L., Zorina M.V., Zuev S.Yu. // Proc. SPIE. 2017. V. 10235. P. 102350M. https://doi.org/10.1117/12.2269312
  3. Mikhailenko M.S., Chkhalo N.I., Pestov A.E., Polkovnikov V.N., Zorina M.V., Zuev S.Yu., Kazakov D.S., Milkov A.V., Strulya I.L., Filichkina V.A., Kozlov A.S. // Appl. Optics. 2019. V. 58. № 13. P. 3652. https://doi.org/10.1364/AO.58.003652
  4. Mikhailenko M.S., Zorina M.V., Pariev D.E., Pestov A.E., Salashchenko N.N., Strulya I.L., Churin S.A., Chkhalo N.I. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2017. V. 11. P. 485. https://doi.org/10.1134/S102745101703017X
  5. Фиговский О.Л., Кудрявцев П.Г. // Инженерный вестн. Дона. 2014. № 2 (29). С. 117.
  6. Корнеев В.И., Данилов В.В. Жидкое и растворимое стекло. СПб: Стройиздат, 1996. 216 с.
  7. Chkhalo N.I., Kaskov I.A., Malyshev I.V., Mikhaylenko M.S., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Toropov M.N., Zabrodin I.G. // Precision Engin. 2017. V. 48. P. 338. https://doi.org/10.1016/j.precisioneng.2017.01.004
  8. Chkhalo N.I., Salashchenko N.N., Zorina M.V. // Rev. Sci. Instrum. 2015. V. 86. № 1. P. 016102. https://doi.org/10.1063/1.4905336
  9. Шупенев А.Е., Панкова Н.С., Коршунов И.С., Григорьянц А.Г. // Изв. вузов. Машиностроение. 2019. Т. 4. С. 18. https://doi.org/10.18698/0536-1044-2019-4-18-27
  10. Николаенко Ю.М., Корнеевец А.С., Эфрос Н.Б., Бурховецкий В.В., Решидова И.Ю. // Письма в ЖТФ. 2019. Т. 45. С. 44. https://doi.org/10.21883/PJTF.2019.13.47958.17743
  11. Фирстов А.П. // Литейщик России. 2015. № 7. С. 15.
  12. Фирстов А.П. // Евразийский союз ученых (ЕСУ). 2019. № 10 (67). С. 61. https://doi.org/10.31618/ESU.2413-9335.2019.6.67.417
  13. А.с. 1 377 262 (СССР). Связующее для древесных плит / Николаев Н.Е., Мирецкий В.Ю. // Б.И. 1988. № 8. С. 4.
  14. Патент 2 683 320 (РФ). Двойной полисиликат щелочного металла и органического основания / ООО “ХИМУНИВЕРС”. Обухова В.Б., Пестерников Г.Н. // Б.И. 2019. № 10. С. 12.
  15. Патент 22 999 229 (РФ). Огнезащитный лак / Левичев А.Н., Павлюкович Н.Г., Казиев М.М., Валецкий П.М. // Б.И. 2007. № 14. С. 17.
  16. Patent 3239549 (USA). Alkali Metal and Quaternary Ammonium Double Salts of Silicic Acid / Philadelphia Quartz Company, Weldes H.H.W. // 1966. № 50877. P. 22.
  17. Patent 3383386 (USA). Process for Making Alkali Metal Quaternary Ammonium Silicates / Philadelphia Quartz Company, Weldes H.H.W. // 1968. № 500328. P. 12.
  18. Patent 3630954 (USA). Organic Amine-Strong Base Stabilized High Surface Area Silica Sols and Method for Preparing Same / E.I. du Pont de Nemours and Company, Yates P.C. // 1971. № 823185. P. 12.
  19. Patent 3769309 (USA). Process for Alkali Metal and Quarternary Nitrogen Compound Double Salts of Silicic Acid / Philadelphia Quartz Company, Weldes H.H.W. // 1973. № 50877. P. 12.
  20. Кудрявцев П.Г., Фиговский О.Л. // Нанотехнологии в строительстве. 2014. Т. 6. № 6. С. 27. https://doi.org/10.15828/2075-8545-2014-6-6-27-45

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (18KB)
3.

Download (923KB)
4.

Download (903KB)
5.

Download (954KB)
6.

Download (1MB)
7.

Download (1MB)

Copyright (c) 2023 М.С. Михайленко, М.В. Зорина, Д.В. Петрова, А.Е. Пестов, И.Л. Струля, Н.И. Чхало