Study of Reflectivity and Microstructure of Mo/Be Multilayer Mirrors

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reflection coefficient and microstructure of Mo/Be multilayer mirrors were studied as functions of Γ, the ratio of the Mo layer thickness to the period dp. The thickness and period of the layers were studied using X‑ray diffraction (wavelength 0.154 nm). Clearly defined high-intensity Bragg reflection peaks indicate good reproducibility of layer thicknesses over the depth of the multilayer structure and high quality of interfaces. The reflectivity of the mirror at a wavelength of 11.4 nm was maximum 62% at Γ = 0.42. It sharply decreased at higher and lower values of Γ. Both Mo and Be layers at Γ = 0.42 were polycrystals, which were studied using X-ray diffraction and Raman spectroscopy, respectively. It was also found that the sizes of crystallites almost coincided with the thicknesses of the Be and Mo layers in the period.

About the authors

G. D. Antysheva

Institute for Physics of Microstructures RAS; Lobachevsky State University of Nizhny Novgorod

Author for correspondence.
Email: sikretnoo@mail.ru
Russia, 603087, Afonino, ,; Russia, 603950, Nizhny Novgorod

N. Kumar

Institute for Physics of Microstructures RAS

Author for correspondence.
Email: kumar@ipmras.ru
Russia, 603087, Afonino, ,

R. S. Pleshkov

Institute for Physics of Microstructures RAS

Email: kumar@ipmras.ru
Russia, 603087, Afonino, ,

P. A. Yunin

Institute for Physics of Microstructures RAS; Lobachevsky State University of Nizhny Novgorod

Email: kumar@ipmras.ru
Russia, 603087, Afonino, ,; Russia, 603950, Nizhny Novgorod

V. N. Polkovnikov

Institute for Physics of Microstructures RAS

Email: kumar@ipmras.ru
Russia, 603087, Afonino, ,

N. I. Chkhalo

Institute for Physics of Microstructures RAS

Email: kumar@ipmras.ru
Russia, 603087, Afonino, ,

References

  1. Medvedev R.V., Zameshin A.A., Sturm J.M., Yakshin A.E., Bijkerk F. // AIP Adv. 2020. V. 10. P. 45305. https://doi.org/10.1063/1.5143397
  2. Underwood J.H., Barbee T.W., Jr., Frieber C. // Appl. Opt. 1986. V. 25. P. 1730. https://doi.org/10.1364/AO.25.001730
  3. Yu B., Jin C., Yao S., Li C., Liu Y., Zhou F., Guo B., Wang H., Xie Y., Wang L. // Appl. Opt. 2017. V. 56. P. 7462. https://doi.org/10.1364/AO.56.007462
  4. Huang Q., Medvedev V., van de Kruijs R., Yakshin A., Louis E., Bijkerk F. // Appl. Phys. Rev. 2017. V. 4. P. 11104. https://doi.org/10.1063/1.4978290
  5. Akhsakhalyan A.D., Kluenkov E.B., Lopatin A.A., Luchin V.I., Nechay A.N., Pestov A.E., Polkovnikov V.N., Salashchenko N.N., Svechnikov M.V., Toropov M.N., Tsybin N.N., Chkhalo N.I., Shcherbakov A.V. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2017. V. 11. P. 1. https://doi.org/10.7868/S0207352817010048
  6. Bajt S. // J. Vac. Sci. Technol. A. 2000. V. 18. P. 557.
  7. Svechnikov M.V., Chkhalo N.I., Gusev S.A., Nechay A.N., Pariev D.E., Pestov A.E., Polkovnikov V.N., Tatarskiy D.A., Salashchenko N.N., Schafers F., Sertsu M.G., Sokolov A., Vainer Y.A., Zorina M.V. // Optics Express. 2018. V. 26. P. 33718. https://doi.org/10.1364/OE.26.033718
  8. Полковников В.Н., Салащенко Н.Н., Свечников М.В., Чхало Н.И. // УФН. 2020. Т. 190. С. 92. https://doi.org/10.3367/UFNr.2019.05.038623
  9. Kumar N., Pleshkov R.S., Garakhin S.A., Nezhdanov A.V., Yunin P.A., Polkovnikov V.N., Chkhalo N.I. // Surf. Interfaces. 2022. V. 28. P. 101656. https://doi.org/10.1016/j.surfin.2021.101656
  10. Kozakov A.T., Kumar N., Garakhin S.A., Polkovnikov V.N., Chkhalo N.I., Nikolskii A.V., Scrjabin A.A., Nezhdanov A.V., Yunin P.A. // Appl. Surf. Sci. 2021. V. 566. P. 150616. https://doi.org/10.1016/j.apsusc.2021.150616
  11. Kumar N., Pleshkov R.S., Nezhdanov A.V., Polkovnikov V.N., Yunin P.A., Chkhalo N.I., Mashin A.I. // J. Phys. Chem. 2021. V. 125. P. 2729. https://doi.org/10.1021/ACS.JPCC.0C10210
  12. Pardanaud C., Rusu M.I., Giacometti G., Martin C., Addab Y., Roubin P., Lungu C.P., Porosnicu C., Jepu I., Dinca P., Lungu M., Pompilian O.G., Mateus R., Alves E., Rubel M. // Phys. Scr. 2016. V. 167. P. 14027. https://doi.org/10.1088/0031-8949/T167/1/014027
  13. Feldman D.W., Parker J.H., Jr., Ashkin M. // Phys. Rev. Lett. 1968. V. 21. P. 607. https://doi.org/10.1103/PhysRevLett.21.607
  14. Roy A.P., Dasannacharya B.A., Thaper C.L., Iyengar P.K. // Phys. Rev. Lett. 1973. V. 30. P. 906. https://doi.org/10.1103/PhysRevLett.30.906
  15. Nedelcu I., van de R.W.E., Yakshin A.E., Bijkerk F. // Phys. Rev. B. 2007. V. 76. P. 245404. https://doi.org/10.1103/PhysRevB.76.245404
  16. Гарахин С.А., Забродин И.Г., Зуев С.Ю., Каськов И.А., Лопатин А.Я., Нечай А.Н., Полковников В.Н., Салащенко Н.Н., Цыбин Н.Н., Чхало Н.И. // Квантовая электроника. 2017. Т. 47. № 4. С. 385.
  17. Landau L.D., Lifshitz E.M. Electrodynamics of Continuous Media. Oxford: Pergamon Press, 1984. 475 p.
  18. Starkov I.A., Starkov A.S. // J. Phys.: Conf. Ser. 2016. V. 741. P. 12004. https://doi.org/10.1088/1742-6596/741/1/012004
  19. Chkhalo N.I., Fedorchenko M.V., Kovalenko N.V., Kruglyakov E.P., Volokhov A.I., Chernov V.A., Mytnichenko S.V. // Nucl. Instrum. Methods Phys. Res. 1995. V 359. P. 121. https://doi.org/10.1016/0168-9002(94)01633-X
  20. Svechnikov M. // J. Appl. Crystallogr. 2020. V. 53. P. 244. https://doi.org/10.1107/S160057671901584X
  21. Kumar N., Pleshkov R.S., Nezhdanov A.V., Polkovnikov V.N., Yunin P.A., Chkhalo N.I., Mashin A.I. // J. Phys. Chem. C. 2021. V. 125. P. 2729. https://doi.org/10.1021/ACS.JPCC.0C10210

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (413KB)
3.

Download (236KB)

Copyright (c) 2023 Г.Д. Антышева, Н. Кумар, Р.С. Плешков, П.А. Юнин, В.Н. Полковников, Н.И. Чхало