Features of electron reflection by layer of carbon nanotubes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The anisotropic properties of a layer of carbon nanotubes upon electron reflection have been studied. Only a small part of the incident electrons is found to reflect from a target with a surface layer of oriented carbon nanotubes. Reflection occurs only from a layer of horizontally oriented nanotubes at an angle of incidence greater than 80° and vertically oriented nanotubes at an angle of incidence less than 10°. The effect is explained by peculiarities of the formation of an electron flux in the surface layers of the target.

全文:

受限制的访问

作者简介

N. Novikov

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

编辑信件的主要联系方式.
Email: nvnovikov65@mail.ru
俄罗斯联邦, 119991, Moscow

N. Chechenin

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: nvnovikov65@mail.ru
俄罗斯联邦, 119991, Moscow

A. Shirokova

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: nvnovikov65@mail.ru
俄罗斯联邦, 119991, Moscow

参考

  1. Макунин А.В., Чеченин Н.Г. Полимер-наноуглеродные композиты для космических технологий. Ч. 1. М.: Университетская книга, 2011. 150 с.
  2. Елецкий А.В. // УФН. 2006. Т. 177. № 3. С. 233.
  3. Новиков Л.С., Воронина Е.Н. Взаимодействие космических аппаратов с окружающей средой. М: КДУ, Университетская книга, 2021. 560 с.
  4. Salleh N., Ghazali N., Yhaya M.F., Fridaus M. // Int. J. Polymeric Mater. 2009. V. 58. № 7. Р. 384.
  5. Бронштейн И.М., Фрайман Б.С. Вторичная электронная эмиссия. М.: Наука, 1969. 407 с.
  6. Рид С.Дж.Б. Электронно-зондовый микроанализ и растровая электронная микроскопия в геологии. М.: Техносфера, 2008. 229 с.
  7. Vos M., Chatzidimitrious-Dreismann C.A., Abdul-Redah T., Mayers J. // Nucl. Instrum. Methods Phys. Res. B. 2005. V. 227. P. 233.
  8. Калашников Н.П., Ремизович В.С., Рязанов М.И. Столкновения быстрых заряженных частиц в твердых телах. М.: Атомиздат, 1980. 272 с.
  9. Тилинин И.С. // ЖЭТФ. 1982. Т. 82. Вып. 4. С. 1291.
  10. Baro J., Sempau J., Fernandez-Varea J.M., Salvat F. // Nucl. Instrum. Methods Phys. Res. B. 1995. V. 100. P. 31.
  11. Sempau J., Fernandez-Varea J.M., Acosta E., Salvat F. // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 207. P. 107. https://doi.org/10.1016/S0168-583X(03)00453-1
  12. Seral-Ascaso A., Garriga R., Sanjuán M. L., Razal J.M., Lahoz R., Laguna M., Fuente G.F., Muñoz E. // Nanoscale Res. Lett. 2013. V. eight. P. 233.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the reflection coefficient F(E,α = 0) on the angle of incidence when reflecting from a homogeneous carbon target of electrons with energy: 11 (1); 50 keV (2).

下载 (72KB)
3. Fig. 2. Variants of the arrangement of a cluster of NCNT = 91 single-layer CNTs with respect to a beam of electrons incident on the target at an angle α to the normal, which is oriented: a – along the axis of the tubes; b – perpendicular to the axis of the tubes at an angle between the scattering plane and the direction of the CNT φ = 0°.

下载 (175KB)
4. Fig. 3. Dependence on the azimuth angle of the reflection coefficient by a layer of horizontally oriented CNTs. Electrons with energy E = 20 keV fall to the surface at an angle α: 1 – 80°; 2 – 85°; 3 – 88°.

下载 (109KB)
5. Fig. 4. Dependence on the angle of incidence of the reflection coefficient from a target of horizontally oriented CNTs at φ = 0° of electrons with energy: 11 (1); 20 (2); 30 (3); 50 keV (4). The calculation errors correspond to the size of the symbols on curve 4.

下载 (125KB)
6. Fig. 5. Dependence of the reflection coefficient on the angle of incidence during electron scattering by a target of vertically oriented CNTs. Notation as in Fig. 4.

下载 (88KB)

版权所有 © Russian Academy of Sciences, 2024