Features of electron reflection by layer of carbon nanotubes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The anisotropic properties of a layer of carbon nanotubes upon electron reflection have been studied. Only a small part of the incident electrons is found to reflect from a target with a surface layer of oriented carbon nanotubes. Reflection occurs only from a layer of horizontally oriented nanotubes at an angle of incidence greater than 80° and vertically oriented nanotubes at an angle of incidence less than 10°. The effect is explained by peculiarities of the formation of an electron flux in the surface layers of the target.

Texto integral

Acesso é fechado

Sobre autores

N. Novikov

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Autor responsável pela correspondência
Email: nvnovikov65@mail.ru
Rússia, 119991, Moscow

N. Chechenin

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: nvnovikov65@mail.ru
Rússia, 119991, Moscow

A. Shirokova

Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics

Email: nvnovikov65@mail.ru
Rússia, 119991, Moscow

Bibliografia

  1. Макунин А.В., Чеченин Н.Г. Полимер-наноуглеродные композиты для космических технологий. Ч. 1. М.: Университетская книга, 2011. 150 с.
  2. Елецкий А.В. // УФН. 2006. Т. 177. № 3. С. 233.
  3. Новиков Л.С., Воронина Е.Н. Взаимодействие космических аппаратов с окружающей средой. М: КДУ, Университетская книга, 2021. 560 с.
  4. Salleh N., Ghazali N., Yhaya M.F., Fridaus M. // Int. J. Polymeric Mater. 2009. V. 58. № 7. Р. 384.
  5. Бронштейн И.М., Фрайман Б.С. Вторичная электронная эмиссия. М.: Наука, 1969. 407 с.
  6. Рид С.Дж.Б. Электронно-зондовый микроанализ и растровая электронная микроскопия в геологии. М.: Техносфера, 2008. 229 с.
  7. Vos M., Chatzidimitrious-Dreismann C.A., Abdul-Redah T., Mayers J. // Nucl. Instrum. Methods Phys. Res. B. 2005. V. 227. P. 233.
  8. Калашников Н.П., Ремизович В.С., Рязанов М.И. Столкновения быстрых заряженных частиц в твердых телах. М.: Атомиздат, 1980. 272 с.
  9. Тилинин И.С. // ЖЭТФ. 1982. Т. 82. Вып. 4. С. 1291.
  10. Baro J., Sempau J., Fernandez-Varea J.M., Salvat F. // Nucl. Instrum. Methods Phys. Res. B. 1995. V. 100. P. 31.
  11. Sempau J., Fernandez-Varea J.M., Acosta E., Salvat F. // Nucl. Instrum. Methods Phys. Res. B. 2003. V. 207. P. 107. https://doi.org/10.1016/S0168-583X(03)00453-1
  12. Seral-Ascaso A., Garriga R., Sanjuán M. L., Razal J.M., Lahoz R., Laguna M., Fuente G.F., Muñoz E. // Nanoscale Res. Lett. 2013. V. eight. P. 233.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of the reflection coefficient F(E,α = 0) on the angle of incidence when reflecting from a homogeneous carbon target of electrons with energy: 11 (1); 50 keV (2).

Baixar (72KB)
3. Fig. 2. Variants of the arrangement of a cluster of NCNT = 91 single-layer CNTs with respect to a beam of electrons incident on the target at an angle α to the normal, which is oriented: a – along the axis of the tubes; b – perpendicular to the axis of the tubes at an angle between the scattering plane and the direction of the CNT φ = 0°.

Baixar (175KB)
4. Fig. 3. Dependence on the azimuth angle of the reflection coefficient by a layer of horizontally oriented CNTs. Electrons with energy E = 20 keV fall to the surface at an angle α: 1 – 80°; 2 – 85°; 3 – 88°.

Baixar (109KB)
5. Fig. 4. Dependence on the angle of incidence of the reflection coefficient from a target of horizontally oriented CNTs at φ = 0° of electrons with energy: 11 (1); 20 (2); 30 (3); 50 keV (4). The calculation errors correspond to the size of the symbols on curve 4.

Baixar (125KB)
6. Fig. 5. Dependence of the reflection coefficient on the angle of incidence during electron scattering by a target of vertically oriented CNTs. Notation as in Fig. 4.

Baixar (88KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024