Polymethyl Methacrylate with a Molecular Weight of 107 g/mol for X-Ray Lithography
- 作者: Nazmov V.P.1,2, Varand A.V.1, Mikhailenko M.A.2, Goldenberg B.G.1,3, Prosanov I.Y.2, Gerasimov K.B.2
-
隶属关系:
- Budker Institute of Nuclear Physics of SB RAS
- Institute of Solid State Chemistry and Mechanochemistry of SB RAS
- Shared-Use Center “SKIF”, Boreskov Institute of Catalysis of SB RAS
- 期: 编号 6 (2023)
- 页面: 27-31
- 栏目: Articles
- URL: https://archivog.com/1028-0960/article/view/664547
- DOI: https://doi.org/10.31857/S1028096023060110
- EDN: https://elibrary.ru/DKCOQS
- ID: 664547
如何引用文章
详细
The results of a study of syndiotactic polymethyl methacrylate with a molecular weight of 107 g/mol, synthesized via ionic polymerization with radiation initiation, are presented. Changes in the chemical structure of the polymer material have been analyzed by IR spectroscopy, differential thermal analysis, and gel permeation chromatography. During thermal decomposition of the initial polymer, the mass loss process can be divided into three stages: low-temperature, medium-temperature, and high-temperature. The pronounced thermal effect of polymer melting disappears even after exposure to minimal doses of ionizing radiation. A relatively rapid decrease in the molecular weight under the influence of X-ray radiation in the dose range up to 100 J/cm3 and a scatter in molecular sizes have been found. Polydispersity at low doses is approximately 3.5 times higher than that at doses of the order of 10 kJ/cm3. A latent image development rate of approximately five times higher than that of a polymer with a molecular weight of 106 g/mol under standard conditions was achieved. The contrast value was 3.4. Using X-ray synchrotron radiation at the VEPP-3 source, microstructuring was carried out by X-ray lithography. Microstructures up to 5 µm high and about 2 µm in diameter were obtained.
作者简介
V. Nazmov
Budker Institute of Nuclear Physics of SB RAS; Institute of Solid State Chemistry and Mechanochemistry of SB RAS
编辑信件的主要联系方式.
Email: V.P.Nazmov@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk
A. Varand
Budker Institute of Nuclear Physics of SB RAS
Email: mikhailenkoma79@gmail.com
Russia, 630090, Novosibirsk
M. Mikhailenko
Institute of Solid State Chemistry and Mechanochemistry of SB RAS
编辑信件的主要联系方式.
Email: mikhailenkoma79@gmail.com
Russia, 630090, Novosibirsk
B. Goldenberg
Budker Institute of Nuclear Physics of SB RAS; Shared-Use Center “SKIF”, Boreskov Institute of Catalysis of SB RAS
Email: mikhailenkoma79@gmail.com
Russia, 630090, Novosibirsk; Russia, 630559, Novosibirsk
I. Prosanov
Institute of Solid State Chemistry and Mechanochemistry of SB RAS
Email: mikhailenkoma79@gmail.com
Russia, 630090, Novosibirsk
K. Gerasimov
Institute of Solid State Chemistry and Mechanochemistry of SB RAS
Email: mikhailenkoma79@gmail.com
Russia, 630090, Novosibirsk
参考
- Haller I., Hatzakis M., Srinivasan R. // IBM J. Res. Devel. 1968. V. 12. P. 251. https://doi.org/10.1147/rd.123.0251
- Spears D.L., Smith H.I. // Electron. Lett. 1972. V. 8. P. 102. https://doi.org/10.1049/el:19720074
- Vladimirsky Y., Vladimirsky O., Morris K.J., M. Klopf J., Calderon G.M., Saile V. // Microelectron. Eng. 1996. V. 30. № 1–4. P. 543. https://doi.org/10.1016/0167-9317(95)00305-3
- Greeneich J.S. // J. Electrochem. Soc. 1975. V. 122. P. 970.
- Charlesby A. Atomic Radiation and Polymers. N.Y.: Pergamon, 1960. 556 p.
- Hiraoka H. // IBM J. Res. Devel. 1977. V. 21. P. 121. https://doi.org/10.1147/rd.212.0121
- De Carlo F., Mancini D.C., Lai B., Song J.J. // Microsyst. Technol. 1998. V. 4. P. 86. https://doi.org/10.1007/s005420050102
- Nazmov V.P., Mezentseva L.A., Pindyurin V.F., Petrov V.V., Yakovleva E.N. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. P. 493. https://doi.org/10.1016/S0168-9002(00)00238-2
- Pantenburg F.J., Achenbach S., Mohr J. // J. Vac. Sci. Technol. B. 1998. V. 16. № 6. P. 3547. https://doi.org/10.1116/1.590494
- Moreau W.M. Semiconductor Lithography: Principles, Practices, and Materials. N.Y.: Plenum Press, 1988. 986 p.
- Yan M., Choi S., Subramanian K.R.V., Adesida I. // J. Vac. Sci. Technol. B. 2008. V. 26. № 6. P. 2306. https://doi.org/1.0.1116/1.3002562
- Khoury M., Ferry D.K. // J. Vac. Sci. Technol. B. 1996. V. 14. № 1. P. 75. https://doi.org/10.1116/1.588437
- Nagai H. // J. Appl. Pol. Sci. 1963. V. 7. № 5. P. 1697 https://doi.org/10.1002/app.1963.070070512
- Willis H.A., Zichy V.J.I., Hendra P.J. // Polymer. 1969. V. 10. P.737. https://doi.org/10.1016/0032-3861(69)90101-3
- Patent No. 3039110 (DE). Verfahren fur Die Spannungsfreie Entwicklung von Bestrahlten Polymethylmethacrylatschichten / Siemens AG, Munich. Glasha- user W., Ghica G.-V. 16.10.1980.
- Goldenberg B.G., Lemzyakov A.G., Nazmov V.P., Pindyurin V.F. // Phys. Procedia. 2016. V. 84. P. 205. https://doi.org/10.1016/j.phpro.2016.11.036
- Piminov P.A., Baranov G.N., Bogomyagkov A.V., Berkaev D.E., Borin V.M., Dorokhov V.L., Karnaev S.E., Kiselev V.A., Levichev E.B., Meshkov O.I., Mishnev S.I., Nikitin S.A., Nikolaev I.B., Sinyatkin S.V., Vobly P.D., Zolotarev K.V., Zhuravlev A.N. // Phys. Procedia. 2016. V. 84. P. 19. https://doi.org/10.1016/j.phpro.2016.11.005
- Nazmov V., Goldenberg B., Vasiliev A., Asadchikov V. // J. Micromech. Microeng. 2021. V. 31. P. 055011. https://doi.org/10.1088/1361-6439/abf331
- El-Kholi A., Mohr J., Nazmov V. // Nucl. Instrum. Methods Phys. Res. A. 2000. V. 448. № 1–2. P. 497. https://doi.org/10.1016/S0168-9002(00)00239-4
- Kunka D., Mohr J., Nazmov V., Meiser J., Meyer P., Amberger M., Koch F., Schulz J., Walter M., Duttenhofer T., Voigt A., Ahrens G., Grützner G. // Microsyst. Technol. 2014. V. 20. № 10–11. P. 2023. https://doi.org/10.1007/s00542-013-2055-x
- McNamara S. // J. Micromech. Microeng. 2011. V. 21. P. 015002. https://doi.org/10.1088/0960-1317/21/1/015002
补充文件
