The use of fluorescence time-resolved microscopy to increase the endoplasmic reticulum selectivity of arylidene-imidazolones fluorogenic dyes
- Autores: Gilvanov A.R.1, Smirnov A.Y.1, Krasnova S.A.1, Solovyev I.D.2, Savitsky A.P.2, Bogdanova Y.A.1, Baranov M.S.1,3
-
Afiliações:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
- Pirogov Russian National Research Medical University
- Edição: Volume 50, Nº 5 (2024)
- Páginas: 694-701
- Seção: ПИСЬМА РЕДАКТОРУ
- URL: https://archivog.com/0132-3423/article/view/670817
- DOI: https://doi.org/10.31857/S0132342324050129
- EDN: https://elibrary.ru/LQOADH
- ID: 670817
Citar
Resumo
Using fluorescence time-resolved microscopy (FLIM), a number of previously synthesized fluorogenic aryliden-imidazolone analogues, predominantly staining the endoplasmic reticulum (ER) of living cells, were studied. It has been shown that the use of this type of fluorescence microscopy can increase the selectivity of ER staining.
Palavras-chave
Texto integral

Sobre autores
A. Gilvanov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Autor responsável pela correspondência
Email: aidar_gilvanov@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
A. Smirnov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: aidar_gilvanov@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
S. Krasnova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: aidar_gilvanov@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
I. Solovyev
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
Email: aidar_gilvanov@mail.ru
Rússia, Leninskiy prosp. 33/2, 119071 Moscow
A. Savitsky
A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
Email: aidar_gilvanov@mail.ru
Rússia, Leninskiy prosp. 33/2, 119071 Moscow
Yu. Bogdanova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS
Email: aidar_gilvanov@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997
M. Baranov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS; Pirogov Russian National Research Medical University
Email: aidar_gilvanov@mail.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997; ul. Ostrovitianova 1, Moscow, 117997
Bibliografia
- Jana P., Patel N., Mukherjee T., Soppina V., Kanvah S. // New J. Chem. 2019. V. 43. P. 10859–10867. https://doi.org/10.1039/C9NJ01972C
- Plamont M.-A., Billon-Denis E., Maurin S., Gauron C., Pimenta F.M., Specht C.G., Shi J., Quérard J., Pan B., Rossignol J., Moncoq K., Morellet N., Volovitch M., Lescop E., Chen Y., Triller A., Vriz S., Le Saux T., Jullien L., Gautier A. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 497–502. https://doi.org/10.1073/pnas.1513094113
- Szent-Gyorgyi C., Schmidt B.F., Creeger Y., Fisher G.W., Zakel K.L., Adler S., Fitzpatrick J.A.J., Woolford C.A., Yan Q., Vasilev K.V., Berget P.B., Bruchez M.P., Jarvik J.W., Waggoner A. // Nat. Biotechnol. 2008. V. 26. P. 235–240. https://doi.org/10.1038/nbt1368
- Hori Y., Norinobu T., Sato M., Arita K., Shirakawa M., Kikuchi K. // J. Am. Chem. Soc. 2013. V. 135. P. 12360– 12365. https://doi.org/10.1021/ja405745v
- Schoen I., Ries J., Klotzsch E., Ewers H., Vogel V. // Nano Lett. 2011. V. 11. P. 4008–4011. https://doi.org/10.1021/nl2025954
- Pal K., Samanta I., Gupta R.K., Goswami D., Koner A.L. // Chem. Commun. (Camb). 2018. V. 54. P. 10590–10593. https://doi.org/10.1039/C8CC03962C
- Hu R., Chen B., Wang Z., Qin A., Zhao Z., Lou X., Tang B.Z. // Biomaterials. 2019. V. 203. P. 43–51. https://doi.org/10.1016/j.biomaterials.2019.03.002
- Hu P.F., Liu B. // Org. Biomol. Chem. 2016. V. 14. P. 9931–9944. https://doi.org/10.1039/C6OB01414C
- Collot M., Kreder R., Tatarets A.L., Patsenker L.D., Mely Y., Klymchenko A.S. // Chem. Commun. (Camb). 2015. V. 51. P. 17136–17139. https://doi.org/10.1039/C5CC06094J
- Baleeva N.S., Baranov M.S. // Chem. Heterocycl. Comp. 2016. V. 52. P. 444–446. https://doi.org/10.1007/s10593-016-1909-4
- Walker C.L., Lukyanov K.A., Yampolsky I.V., Mishin A.S., Bommarius A.S., Duraj-Thatte A.M., Azizi B., Tolbert L.M., Solntsev K.M. // Curr. Opin. Chem. Biol. 2015. V. 27. P. 64–74. https://doi.org/10.1016/j.cbpa.2015.06.002
- Smirnov A.Y., Perfilov M.M., Zaitseva E.R., Zagudaylova M.B., Zaitseva S.O., Mishin A.S., Baranov M.S. // Dyes and Pigments. 2020. V. 177. P. 108258. https://doi.org/10.1016/j.dyepig.2020.108258
- Perfilov M.M., Zaitseva E.R., Smirnov A.Y., Mikhaylov A.A., Baleeva N.S., Myasnyanko I.N., Mishin A.S., Baranov M.S. // Dyes and Pigments. 2022. V. 198. P. 110033. https://doi.org/10.1016/j.dyepig.2021.110033
- Perfilov M.M., Zaitseva E.R., Baleeva N.S., Kublitski V.S., Smirnov A.Y., Bogdanova Y.A., Krasnova S.A., Myasnyanko I.N., Mishin A.S., Baranov M.S. // Int. J. Mol. Sci. 2023. V. 24. P. 9923. https://doi.org/10.3390/ijms24129923
- Braakman I., Hebert D.N. // Cold Spring Harb. Perspect. Biol. 2013. V. 5. P. a013201. https://doi.org/10.1101/cshperspect.a013201
- Viotti C. // Methods Mol. Biol. 2016. V. 1459. P. 3–29. https://doi.org/10.1007/978-1-4939-3804-9_1
- Fagone P., Jackowski S. // J. Lipid Res. 2009. V. 50 Suppl. P. S311–S316. https://doi.org/10.1194/jlr.R800049-JLR200
- Clapham D.E. // Cell. 2007. V. 131. P. 1047–1058. https://doi.org/10.1016/j.cell.2007.11.028
- Celik C., Lee S.Y.T., Yap W.S., Thibault G. // Prog. Lipid Res. 2023. V. 89. P. 101198. https://doi.org/10.1016/j.plipres.2022.101198
- Yousuf M.S., Maguire A.D., Simmen T., Kerr B.J. // Mol. Pain. 2020. V. 16. P. 1744806920946889. https://doi.org/10.1177/1744806920946889
- Park S.-J., Li C., Chen Y.M. // Am. J. Pathol. 2021. V. 191. P. 256–265. https://doi.org/10.1016/j.ajpath.2020.11.006
- Jin C., Kumar P., Gracia-Sancho J., Dufour J.-F. // FEBS Lett. 2021. V. 595. P. 1411–1421. https://doi.org/10.1002/1873-3468.14078
- Zeeshan H.M.A., Lee G.H., Kim H.-R., Chae H.-J. // Int. J. Mol. Sci. 2016. V. 17. P. 327. https://doi.org/10.3390/ijms17030327
- Farese R.V., Walther T.C. // Cell. 2009. V. 139. P. 855–860. https://doi.org/10.1016/j.cell.2009.11.005
- Onal G., Kutlu O., Gozuacik D., Dokmeci Emre S. // Lipids Health Dis. 2017. V. 16. P. 128. https://doi.org/10.1186/s12944-017-0521-7
- Datta R., Heaster T.M., Sharick J.T., Gillette A.A., Skala M.C. // J. Biomed. Opt. 2020. V. 25. P. 1–43. https://doi.org/10.1117/1.JBO.25.7.071203
- Hille C., Berg M., Bressel L., Munzke D., Primus P., Löhmannsröben H.-G., Dosche C. // Anal. Bioanal. Chem. 2008. V. 391. P. 1871–1879. https://doi.org/10.1007/s00216-008-2147-0.
- Koda K., Keller S., Kojima R., Kamiya M., Urano Y. // Anal. Chem. 2022. V. 94. P. 11264–11271. https://doi.org/10.1021/acs.analchem.2c01840
- Hille C., Lahn M., Löhmannsröben H.-G., Dosche C. // Photochem. Photobiol. Sci. 2009. V. 8. P. 319–327. https://doi.org/10.1039/b813797h
- Despa S., Vecer J., Steels P., Ameloot M. // Anal. Biochem. 2000. V. 281. P. 159–175. https://doi.org/10.1006/abio.2000.4560
- Jahn K., Hille C. // PLoS One. 2014. V. 9. P. e105334. https://doi.org/10.1371/journal.pone.0105334
- Wilms C.D., Eilers J. // J. Microsc. 2007. V. 225. P. 209–213. https://doi.org/10.1111/j.1365-2818.2007.01746.x
- Okabe K., Inada N., Gota C., Harada Y., Funatsu T., Uchiyama S. // Nat. Commun. 2012. V. 3. P. 705. https://doi.org/10.1038/ncomms1714
- Kuimova M.K. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 12671–12686. https://doi.org/10.1039/c2cp41674c
- Sha J., Liu W., Zheng X., Guo Y., Li X., Ren H., Qin Y., Wu J., Zhang W., Lee C.-S., Wang P. // Anal. Chem. 2023. V. 95. P. 15350–15356. https://doi.org/10.1021/acs.analchem.3c03047
- Levitt J.A., Chung P.-H., Suhling K. // J. Biomed. Opt. 2015. V. 20. P. 96002. https://doi.org/10.1117/1.JBO.20.9.096002
- Stöckl M.T., Herrmann A. // Biochim. Biophys. Acta. 2010. V. 1798. P. 1444–1456. https://doi.org/10.1016/j.bbamem.2009.12.015
Arquivos suplementares
