Использование флуоресцентной времяразрешенной микроскопии для повышения селективности флуорогенных красителей ряда арилиден-имидазолонов в отношении эндоплазматического ретикулума

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

С использованием флуоресцентной времяразрешенной микроскопии (FLIM) был изучен набор синтезированных ранее флуорогенов ряда арилиден-имидазолонов, преимущественно окрашивающих эндоплазматический ретикулум (ЭПР) живых клеток. Показано, что использование этого типа флуоресцентной микроскопии позволяет повысить селективность окрашивания ЭПР.

Полный текст

Доступ закрыт

Об авторах

А. Р. Гильванов

ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН

Автор, ответственный за переписку.
Email: aidar_gilvanov@mail.ru
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10

А. Ю. Смирнов

ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН

Email: aidar_gilvanov@mail.ru
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10

С. А. Краснова

ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН

Email: aidar_gilvanov@mail.ru
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10

И. Д. Соловьев

Институт биохимии им. А.Н. Баха, ФИЦ “Фундаментальные основы биотехнологии” РАН

Email: aidar_gilvanov@mail.ru
Россия, 119071 Москва, Ленинский просп., 33, стр. 2

А. П. Савицкий

Институт биохимии им. А.Н. Баха, ФИЦ “Фундаментальные основы биотехнологии” РАН

Email: aidar_gilvanov@mail.ru
Россия, 119071 Москва, Ленинский просп., 33, стр. 2

Ю. А. Богданова

ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН

Email: aidar_gilvanov@mail.ru
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10

М. С. Баранов

ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; Российский национальный исследовательский медицинский университет им. Н.И. Пирогова

Email: aidar_gilvanov@mail.ru
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10; 117997 Москва, ул. Островитянова, 1

Список литературы

  1. Jana P., Patel N., Mukherjee T., Soppina V., Kanvah S. // New J. Chem. 2019. V. 43. P. 10859–10867. https://doi.org/10.1039/C9NJ01972C
  2. Plamont M.-A., Billon-Denis E., Maurin S., Gauron C., Pimenta F.M., Specht C.G., Shi J., Quérard J., Pan B., Rossignol J., Moncoq K., Morellet N., Volovitch M., Lescop E., Chen Y., Triller A., Vriz S., Le Saux T., Jullien L., Gautier A. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. 497–502. https://doi.org/10.1073/pnas.1513094113
  3. Szent-Gyorgyi C., Schmidt B.F., Creeger Y., Fisher G.W., Zakel K.L., Adler S., Fitzpatrick J.A.J., Woolford C.A., Yan Q., Vasilev K.V., Berget P.B., Bruchez M.P., Jarvik J.W., Waggoner A. // Nat. Biotechnol. 2008. V. 26. P. 235–240. https://doi.org/10.1038/nbt1368
  4. Hori Y., Norinobu T., Sato M., Arita K., Shirakawa M., Kikuchi K. // J. Am. Chem. Soc. 2013. V. 135. P. 12360– 12365. https://doi.org/10.1021/ja405745v
  5. Schoen I., Ries J., Klotzsch E., Ewers H., Vogel V. // Nano Lett. 2011. V. 11. P. 4008–4011. https://doi.org/10.1021/nl2025954
  6. Pal K., Samanta I., Gupta R.K., Goswami D., Koner A.L. // Chem. Commun. (Camb). 2018. V. 54. P. 10590–10593. https://doi.org/10.1039/C8CC03962C
  7. Hu R., Chen B., Wang Z., Qin A., Zhao Z., Lou X., Tang B.Z. // Biomaterials. 2019. V. 203. P. 43–51. https://doi.org/10.1016/j.biomaterials.2019.03.002
  8. Hu P.F., Liu B. // Org. Biomol. Chem. 2016. V. 14. P. 9931–9944. https://doi.org/10.1039/C6OB01414C
  9. Collot M., Kreder R., Tatarets A.L., Patsenker L.D., Mely Y., Klymchenko A.S. // Chem. Commun. (Camb). 2015. V. 51. P. 17136–17139. https://doi.org/10.1039/C5CC06094J
  10. Baleeva N.S., Baranov M.S. // Chem. Heterocycl. Comp. 2016. V. 52. P. 444–446. https://doi.org/10.1007/s10593-016-1909-4
  11. Walker C.L., Lukyanov K.A., Yampolsky I.V., Mishin A.S., Bommarius A.S., Duraj-Thatte A.M., Azizi B., Tolbert L.M., Solntsev K.M. // Curr. Opin. Chem. Biol. 2015. V. 27. P. 64–74. https://doi.org/10.1016/j.cbpa.2015.06.002
  12. Smirnov A.Y., Perfilov M.M., Zaitseva E.R., Zagudaylova M.B., Zaitseva S.O., Mishin A.S., Baranov M.S. // Dyes and Pigments. 2020. V. 177. P. 108258. https://doi.org/10.1016/j.dyepig.2020.108258
  13. Perfilov M.M., Zaitseva E.R., Smirnov A.Y., Mikhaylov A.A., Baleeva N.S., Myasnyanko I.N., Mishin A.S., Baranov M.S. // Dyes and Pigments. 2022. V. 198. P. 110033. https://doi.org/10.1016/j.dyepig.2021.110033
  14. Perfilov M.M., Zaitseva E.R., Baleeva N.S., Kublitski V.S., Smirnov A.Y., Bogdanova Y.A., Krasnova S.A., Myasnyanko I.N., Mishin A.S., Baranov M.S. // Int. J. Mol. Sci. 2023. V. 24. P. 9923. https://doi.org/10.3390/ijms24129923
  15. Braakman I., Hebert D.N. // Cold Spring Harb. Perspect. Biol. 2013. V. 5. P. a013201. https://doi.org/10.1101/cshperspect.a013201
  16. Viotti C. // Methods Mol. Biol. 2016. V. 1459. P. 3–29. https://doi.org/10.1007/978-1-4939-3804-9_1
  17. Fagone P., Jackowski S. // J. Lipid Res. 2009. V. 50 Suppl. P. S311–S316. https://doi.org/10.1194/jlr.R800049-JLR200
  18. Clapham D.E. // Cell. 2007. V. 131. P. 1047–1058. https://doi.org/10.1016/j.cell.2007.11.028
  19. Celik C., Lee S.Y.T., Yap W.S., Thibault G. // Prog. Lipid Res. 2023. V. 89. P. 101198. https://doi.org/10.1016/j.plipres.2022.101198
  20. Yousuf M.S., Maguire A.D., Simmen T., Kerr B.J. // Mol. Pain. 2020. V. 16. P. 1744806920946889. https://doi.org/10.1177/1744806920946889
  21. Park S.-J., Li C., Chen Y.M. // Am. J. Pathol. 2021. V. 191. P. 256–265. https://doi.org/10.1016/j.ajpath.2020.11.006
  22. Jin C., Kumar P., Gracia-Sancho J., Dufour J.-F. // FEBS Lett. 2021. V. 595. P. 1411–1421. https://doi.org/10.1002/1873-3468.14078
  23. Zeeshan H.M.A., Lee G.H., Kim H.-R., Chae H.-J. // Int. J. Mol. Sci. 2016. V. 17. P. 327. https://doi.org/10.3390/ijms17030327
  24. Farese R.V., Walther T.C. // Cell. 2009. V. 139. P. 855–860. https://doi.org/10.1016/j.cell.2009.11.005
  25. Onal G., Kutlu O., Gozuacik D., Dokmeci Emre S. // Lipids Health Dis. 2017. V. 16. P. 128. https://doi.org/10.1186/s12944-017-0521-7
  26. Datta R., Heaster T.M., Sharick J.T., Gillette A.A., Skala M.C. // J. Biomed. Opt. 2020. V. 25. P. 1–43. https://doi.org/10.1117/1.JBO.25.7.071203
  27. Hille C., Berg M., Bressel L., Munzke D., Primus P., Löhmannsröben H.-G., Dosche C. // Anal. Bioanal. Chem. 2008. V. 391. P. 1871–1879. https://doi.org/10.1007/s00216-008-2147-0.
  28. Koda K., Keller S., Kojima R., Kamiya M., Urano Y. // Anal. Chem. 2022. V. 94. P. 11264–11271. https://doi.org/10.1021/acs.analchem.2c01840
  29. Hille C., Lahn M., Löhmannsröben H.-G., Dosche C. // Photochem. Photobiol. Sci. 2009. V. 8. P. 319–327. https://doi.org/10.1039/b813797h
  30. Despa S., Vecer J., Steels P., Ameloot M. // Anal. Biochem. 2000. V. 281. P. 159–175. https://doi.org/10.1006/abio.2000.4560
  31. Jahn K., Hille C. // PLoS One. 2014. V. 9. P. e105334. https://doi.org/10.1371/journal.pone.0105334
  32. Wilms C.D., Eilers J. // J. Microsc. 2007. V. 225. P. 209–213. https://doi.org/10.1111/j.1365-2818.2007.01746.x
  33. Okabe K., Inada N., Gota C., Harada Y., Funatsu T., Uchiyama S. // Nat. Commun. 2012. V. 3. P. 705. https://doi.org/10.1038/ncomms1714
  34. Kuimova M.K. // Phys. Chem. Chem. Phys. 2012. V. 14. P. 12671–12686. https://doi.org/10.1039/c2cp41674c
  35. Sha J., Liu W., Zheng X., Guo Y., Li X., Ren H., Qin Y., Wu J., Zhang W., Lee C.-S., Wang P. // Anal. Chem. 2023. V. 95. P. 15350–15356. https://doi.org/10.1021/acs.analchem.3c03047
  36. Levitt J.A., Chung P.-H., Suhling K. // J. Biomed. Opt. 2015. V. 20. P. 96002. https://doi.org/10.1117/1.JBO.20.9.096002
  37. Stöckl M.T., Herrmann A. // Biochim. Biophys. Acta. 2010. V. 1798. P. 1444–1456. https://doi.org/10.1016/j.bbamem.2009.12.015

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Дополнительные материалы
Скачать (677KB)
3. Рис. 1. Микрофотографии живых клеток HeLa Kyoto, окрашенных красителями (I) (а), (II) (б), (III) (в) и (IV) (г), полученные с использованием флуоресцентной времяразрешенной микроскопии. Цветовое кодирование отражает времена жизни флуоресценции красителей в зависимости от их окружения. Соответствующий диапазон времен жизни в наносекундах указан под каждой микрофотографией. Для красителей с двумя спектральными компонентами ((I), (III) и (IV)) в качестве значения времени жизни флуоресценции использовали амплитудно-взвешенное среднее время жизни. Масштабный отрезок – 5 мкм.

Скачать (147KB)
4. Рис. 2. Микрофотографии живых клеток HeLa Kyoto, окрашенных красителями (I) и (III) до (а, в соответственно) и после (б, г) удаления областей изображений, содержащих липидные капли. Удаление областей, содержащих липидные капли, осуществляли на основании различий времен жизни флуоресценции веществ при их окрашивании ЭПР и липидных капель. Масштабный отрезок – 5 мкм.

Скачать (114KB)
5. Схема 1. Структуры красителей ряда арилиден-имидазолонов, изученных в работе.

Скачать (48KB)

© Российская академия наук, 2024