Boc/Bzl solid phase synthesis of deltorphin II and its analogues without utilization of anhydrous hydrogen fluoride

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The toxicity and aggressive nature of hydrogen fluoride have resulted in development of alternative strong Lewis acid-based reagents for final deprotection and cleavage steps in Boc/Bzl peptide synthesis. The acids employed are high-boiling liquids unlike hydrogen fluoride, however most peptides could be quite easily isolated from the cleavage cocktails due to their favorable physico-chemical properties: they are usually precipitated with ether. We found that this simple procedure is not suitable for the isolation of Deltorphin II peptides and its analogues. Therefore we developed alternative isolation methods and successfully purified these peptides. The procedures developed could be utilized in purification of other hydrophibic peptides.

Texto integral

Acesso é fechado

Sobre autores

V. Azev

Branch of Shemyakin and Ovchinnikov Bioorganic Chemistry Institute RAS

Autor responsável pela correspondência
Email: viatcheslav.azev@bibch.ru
Rússia, prosp. Nauki 6, Puschino, 142290

L. Mustaeva

Branch of Shemyakin and Ovchinnikov Bioorganic Chemistry Institute RAS

Email: viatcheslav.azev@bibch.ru
Rússia, prosp. Nauki 6, Puschino, 142290

E. Gorbunova

Branch of Shemyakin and Ovchinnikov Bioorganic Chemistry Institute RAS

Email: viatcheslav.azev@bibch.ru
Rússia, prosp. Nauki 6, Puschino, 142290

L. Baidakova

Branch of Shemyakin and Ovchinnikov Bioorganic Chemistry Institute RAS

Email: viatcheslav.azev@bibch.ru
Rússia, prosp. Nauki 6, Puschino, 142290

A. Chulin

Branch of Shemyakin and Ovchinnikov Bioorganic Chemistry Institute RAS

Email: viatcheslav.azev@bibch.ru
Rússia, prosp. Nauki 6, Puschino, 142290

L. Maslov

Cardiology Research Institute, Tomsk National Research Medical Center RAS

Email: viatcheslav.azev@bibch.ru
Rússia, ul. Kievskaya 111-A, Tomsk, 634012

A. Mukhomedziyanov

Cardiology Research Institute, Tomsk National Research Medical Center RAS

Email: viatcheslav.azev@bibch.ru
Rússia, ul. Kievskaya 111-A, Tomsk, 634012

М. Molchanov

Istitute for Theoretical and Experimental Biophysics RAS

Email: viatcheslav.azev@bibch.ru
Rússia, ul. Institutskaya 3, Puschino, 142290

A. Miroshnikov

Shemyakin and Ovchinnikov Bioorganic Chemistry Institute RAS

Email: viatcheslav.azev@bibch.ru
Rússia, ul. Miklukho-Maklaya 16/10, Moscow, 117997

Bibliografia

  1. Lazarus L.H., Bryant Sh.D., Cooper P.S., Salvadori S. // Prog. Neurobiol. 1999. V. 57. P. 377–420. https://doi.org/10.1016/S0301-0082(98)00050-1
  2. Headrick J.P., Pepe S., Peart J.N. // Curr. Pharm. Des. 2012. V. 18. P. 6090–6100. https://doi.org/10.2174/138161212803582360
  3. Rawal H., Patel B.M. // J. Cardiovasc. Pharmacol. Ther. 2018. V. 23. P. 279–291. https://doi.org/10.1177/1074248418757009
  4. See Hoe L., Patel H.H., Peart J.N. // Delta Opioid Receptors and Cardioprotection. In: Delta Opioid Receptor Pharmacology and Therapeutic Applications. Handbook of Experimental Pharmacology. V. 247 / Ed. Jutkiewicz E. Cham: Springer, 2018. P. 301–334. https://doi.org/10.1007/164_2017_6
  5. Maslov L.N., Lishmanov Yu.B., Oeltgen P.R., Barzakh E.I., Krylatov A.V., Govindaswami M., Brown S.A. // Life Sci. 2009. V. 84. P. 657–663. https://doi.org/10.1016/j.lfs.2009.02.016
  6. Maslov L.N., Mukhomedzyanov A.V., Tsibulnikov S.Y., Suleiman M.-S., Khaliulin I., Oeltgen P.R. // Eur. J. Pharmacol. 2021. V. 907. P. 174302. https://doi.org/10.1016/j.ejphar.2021.174302
  7. Popov S.V., Mukhomedzyanov A.V., Maslov L.N., Naryzhnaya N.V., Kurbatov B.K., Prasad N.R., Singh N., Fu F., Azev V.N. // Membranes. 2023. V. 13. P. 63. https://doi.org/10.3390/membranes13010063
  8. Salvadori S., Bianchi C., Lazarus L.H., Scaranari V., Attila M., Tomatis R. // J. Med. Chem. 1992. V. 35. P. 4651–4657. https://doi.org/10.1021/jm00103a001
  9. Benoiton N.L., Lee Y.C., Steinaur R., Chen F.M.F. // Int. J. Pept. Protein Res. 1992. V. 40. P. 559–566. https://doi.org/10.1111/j.1399-3011.1992.tb00441.x
  10. Yang Y. // Side Reactions in Peptide Synthesis (1st ed.). London: Academic Press, 2015.
  11. Guerrini R., Capasso A., Sorrentino L., Anacardio R., Bryant Sh.D., Lazarus L.H., Attila M., Salvadori S. // Eur. J. Pharmacol. 1996. V. 302. P. 37–42. https://doi.org/10.1016/0014-2999(96)00067-2
  12. Sakakibara S., Nakamizo N., Kishida Y., Yoshimura S. // Bull. Chem. Soc. Jpn. 1968. V. 41. P. 1477–1479. https://doi.org/10.1246/bcsj.41.1477
  13. Muttenthaler M., Albericio F., Dawson P.E. // Nat. Protoc. 2015. V. 10. P. 1067–1083. https://doi.org/10.1038/nprot.2015.061
  14. Hughes J.L., Leopold E.J. // Tetrahedron Lett. 1993. V. 34. P. 7713–7716. https://doi.org/10.1016/S0040-4039(00)61546-0
  15. Akaji K., Fujii N., Tokunaga F., Miyata T., Iwanaga S., Yajima H. // Chem. Pharm. Bull. 1989. V. 37. P. 2661– 2664. https://doi.org/10.1248/cpb.37.2661
  16. Jubilut G.N., Cilli E.M., Tominaga M., Miranda A., Okada Y., Nakaie C.R. // Chem. Pharm. Bull. 2001. V. 49. P. 1089–1092. https://doi.org/10.1248/cpb.49.1089
  17. Schnölzer M., Alewood P., Jones A., Alewood D., Kent S.B.H. // Int. J. Pept. Protein Res. 1992. V. 40. P. 180–193. https://doi.org/10.1111/j.1399-3011.1992.tb00291.x
  18. Kaiser E., Colescott R.L., Bossinger C.D., Cook P.I. // Anal. Biochem. 1970. V. 34. P. 595. https://doi.org/10.1016/0003-2697(70)90146-6
  19. Stewart J.M., Young J.D. // Solid Phase Peptide Synthesis. Pierce Chemical Company Rockford, IL, 1984.
  20. Yajima H., Fujii N. // J. Am. Chem. Soc. 1981. V. 103. P. 5867–5871. https://doi.org/10.1021/ja00409a040
  21. Kravchenko S.V., Domnin P.A., Grishin S.Yu., Panfilov A.V., Azev V.N., Mustaeva L.G., Gorbunova E.Yu., Kobyakova M.I., Surin A.K., Glyakina A.V., Fadeev R.S., Ermolaeva S.A., Galzitskaya O.V. // Int. J. Mol. Sci. 2022. V. 23. P. 524. https://doi.org/10.3390/ijms23010524
  22. Espada A., Rivera-Sagredo A. // J. Chromatogr. A. 2003. V. 987. P. 211–220. https://doi.org/10.1016/S0021-9673(02)01819-8
  23. Subirats X., Bosch E., Rosés M. // LCGC North America. 2009. V. 27. P. 1000–1004. https://www.chromatographyonline.com/view/buffer-considerations-lc-and-lc-ms
  24. Göransson U., Luijendijk T., Johansson S., Bohlin L., Claeson P. // J. Nat. Prod. 1999. V. 62. P. 283–286. https://doi.org/10.1021/np9803878
  25. Barbeau D., Guay S., Neugebauer W., Escher E. // J. Med. Chem. 1992. V. 35. P. 151–157. https://doi.org/10.1021/jm00079a020
  26. Myhre P.C. // J. Am. Chem. Soc. 1972. V. 94. P. 7921–7923. https://doi.org/10.1021/ja00777a043
  27. Olah G.A., Narang S.C., Malhotra R., Olah J.A. // J. Am. Chem. Soc. 1979. V. 101. P. 1805–1807. https://doi.org/10.1021/ja00501a028
  28. Nickson T.E. // J. Org. Chem. 1986. V. 51. P. 3903– 3904. https://doi.org/10.1021/jo00370a031
  29. Shiao M.-J., Lai L.-L., Ku W.-Sh., Lin P.-Y., Hwu J. R. // J. Org. Chem. 1993. V. 58. P. 4742–4744. https://doi.org/10.1021/jo00069a046
  30. Knorr R., Trzeciak A., Bannwarth W., Gillessen D. // Tetrahedron Lett. 1989. V. 30. P. 1927–1930. https://doi.org/10.1016/S0040-4039(00)99616-3

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Chromatograms of stages of the gel filtration process of the mixture of peptide (I) and low-molecular impurities, vertical lines correspond to a time interval of 2 min. (a) – Sephadex G-10 sorbent, no separation upon application of the untreated mixture; (b) – Sephadex G-10, partial separation after distillation of a significant portion of the salts with water vapor before application; (c) – Sephadex LH-20 sorbent, partial separation upon application of the untreated mixture; (d) – Sephadex LH-20 sorbent, almost complete separation after distillation of a significant portion of the salts with water vapor during lyophilization before application.

Baixar (64KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024