Boc/Bzl solid phase synthesis of deltorphin II and its analogues without utilization of anhydrous hydrogen fluoride

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The toxicity and aggressive nature of hydrogen fluoride have resulted in development of alternative strong Lewis acid-based reagents for final deprotection and cleavage steps in Boc/Bzl peptide synthesis. The acids employed are high-boiling liquids unlike hydrogen fluoride, however most peptides could be quite easily isolated from the cleavage cocktails due to their favorable physico-chemical properties: they are usually precipitated with ether. We found that this simple procedure is not suitable for the isolation of Deltorphin II peptides and its analogues. Therefore we developed alternative isolation methods and successfully purified these peptides. The procedures developed could be utilized in purification of other hydrophibic peptides.

全文:

受限制的访问

作者简介

V. Azev

Branch of Shemyakin and Ovchinnikov Bioorganic Chemistry Institute RAS

编辑信件的主要联系方式.
Email: viatcheslav.azev@bibch.ru
俄罗斯联邦, prosp. Nauki 6, Puschino, 142290

L. Mustaeva

Branch of Shemyakin and Ovchinnikov Bioorganic Chemistry Institute RAS

Email: viatcheslav.azev@bibch.ru
俄罗斯联邦, prosp. Nauki 6, Puschino, 142290

E. Gorbunova

Branch of Shemyakin and Ovchinnikov Bioorganic Chemistry Institute RAS

Email: viatcheslav.azev@bibch.ru
俄罗斯联邦, prosp. Nauki 6, Puschino, 142290

L. Baidakova

Branch of Shemyakin and Ovchinnikov Bioorganic Chemistry Institute RAS

Email: viatcheslav.azev@bibch.ru
俄罗斯联邦, prosp. Nauki 6, Puschino, 142290

A. Chulin

Branch of Shemyakin and Ovchinnikov Bioorganic Chemistry Institute RAS

Email: viatcheslav.azev@bibch.ru
俄罗斯联邦, prosp. Nauki 6, Puschino, 142290

L. Maslov

Cardiology Research Institute, Tomsk National Research Medical Center RAS

Email: viatcheslav.azev@bibch.ru
俄罗斯联邦, ul. Kievskaya 111-A, Tomsk, 634012

A. Mukhomedziyanov

Cardiology Research Institute, Tomsk National Research Medical Center RAS

Email: viatcheslav.azev@bibch.ru
俄罗斯联邦, ul. Kievskaya 111-A, Tomsk, 634012

М. Molchanov

Istitute for Theoretical and Experimental Biophysics RAS

Email: viatcheslav.azev@bibch.ru
俄罗斯联邦, ul. Institutskaya 3, Puschino, 142290

A. Miroshnikov

Shemyakin and Ovchinnikov Bioorganic Chemistry Institute RAS

Email: viatcheslav.azev@bibch.ru
俄罗斯联邦, ul. Miklukho-Maklaya 16/10, Moscow, 117997

参考

  1. Lazarus L.H., Bryant Sh.D., Cooper P.S., Salvadori S. // Prog. Neurobiol. 1999. V. 57. P. 377–420. https://doi.org/10.1016/S0301-0082(98)00050-1
  2. Headrick J.P., Pepe S., Peart J.N. // Curr. Pharm. Des. 2012. V. 18. P. 6090–6100. https://doi.org/10.2174/138161212803582360
  3. Rawal H., Patel B.M. // J. Cardiovasc. Pharmacol. Ther. 2018. V. 23. P. 279–291. https://doi.org/10.1177/1074248418757009
  4. See Hoe L., Patel H.H., Peart J.N. // Delta Opioid Receptors and Cardioprotection. In: Delta Opioid Receptor Pharmacology and Therapeutic Applications. Handbook of Experimental Pharmacology. V. 247 / Ed. Jutkiewicz E. Cham: Springer, 2018. P. 301–334. https://doi.org/10.1007/164_2017_6
  5. Maslov L.N., Lishmanov Yu.B., Oeltgen P.R., Barzakh E.I., Krylatov A.V., Govindaswami M., Brown S.A. // Life Sci. 2009. V. 84. P. 657–663. https://doi.org/10.1016/j.lfs.2009.02.016
  6. Maslov L.N., Mukhomedzyanov A.V., Tsibulnikov S.Y., Suleiman M.-S., Khaliulin I., Oeltgen P.R. // Eur. J. Pharmacol. 2021. V. 907. P. 174302. https://doi.org/10.1016/j.ejphar.2021.174302
  7. Popov S.V., Mukhomedzyanov A.V., Maslov L.N., Naryzhnaya N.V., Kurbatov B.K., Prasad N.R., Singh N., Fu F., Azev V.N. // Membranes. 2023. V. 13. P. 63. https://doi.org/10.3390/membranes13010063
  8. Salvadori S., Bianchi C., Lazarus L.H., Scaranari V., Attila M., Tomatis R. // J. Med. Chem. 1992. V. 35. P. 4651–4657. https://doi.org/10.1021/jm00103a001
  9. Benoiton N.L., Lee Y.C., Steinaur R., Chen F.M.F. // Int. J. Pept. Protein Res. 1992. V. 40. P. 559–566. https://doi.org/10.1111/j.1399-3011.1992.tb00441.x
  10. Yang Y. // Side Reactions in Peptide Synthesis (1st ed.). London: Academic Press, 2015.
  11. Guerrini R., Capasso A., Sorrentino L., Anacardio R., Bryant Sh.D., Lazarus L.H., Attila M., Salvadori S. // Eur. J. Pharmacol. 1996. V. 302. P. 37–42. https://doi.org/10.1016/0014-2999(96)00067-2
  12. Sakakibara S., Nakamizo N., Kishida Y., Yoshimura S. // Bull. Chem. Soc. Jpn. 1968. V. 41. P. 1477–1479. https://doi.org/10.1246/bcsj.41.1477
  13. Muttenthaler M., Albericio F., Dawson P.E. // Nat. Protoc. 2015. V. 10. P. 1067–1083. https://doi.org/10.1038/nprot.2015.061
  14. Hughes J.L., Leopold E.J. // Tetrahedron Lett. 1993. V. 34. P. 7713–7716. https://doi.org/10.1016/S0040-4039(00)61546-0
  15. Akaji K., Fujii N., Tokunaga F., Miyata T., Iwanaga S., Yajima H. // Chem. Pharm. Bull. 1989. V. 37. P. 2661– 2664. https://doi.org/10.1248/cpb.37.2661
  16. Jubilut G.N., Cilli E.M., Tominaga M., Miranda A., Okada Y., Nakaie C.R. // Chem. Pharm. Bull. 2001. V. 49. P. 1089–1092. https://doi.org/10.1248/cpb.49.1089
  17. Schnölzer M., Alewood P., Jones A., Alewood D., Kent S.B.H. // Int. J. Pept. Protein Res. 1992. V. 40. P. 180–193. https://doi.org/10.1111/j.1399-3011.1992.tb00291.x
  18. Kaiser E., Colescott R.L., Bossinger C.D., Cook P.I. // Anal. Biochem. 1970. V. 34. P. 595. https://doi.org/10.1016/0003-2697(70)90146-6
  19. Stewart J.M., Young J.D. // Solid Phase Peptide Synthesis. Pierce Chemical Company Rockford, IL, 1984.
  20. Yajima H., Fujii N. // J. Am. Chem. Soc. 1981. V. 103. P. 5867–5871. https://doi.org/10.1021/ja00409a040
  21. Kravchenko S.V., Domnin P.A., Grishin S.Yu., Panfilov A.V., Azev V.N., Mustaeva L.G., Gorbunova E.Yu., Kobyakova M.I., Surin A.K., Glyakina A.V., Fadeev R.S., Ermolaeva S.A., Galzitskaya O.V. // Int. J. Mol. Sci. 2022. V. 23. P. 524. https://doi.org/10.3390/ijms23010524
  22. Espada A., Rivera-Sagredo A. // J. Chromatogr. A. 2003. V. 987. P. 211–220. https://doi.org/10.1016/S0021-9673(02)01819-8
  23. Subirats X., Bosch E., Rosés M. // LCGC North America. 2009. V. 27. P. 1000–1004. https://www.chromatographyonline.com/view/buffer-considerations-lc-and-lc-ms
  24. Göransson U., Luijendijk T., Johansson S., Bohlin L., Claeson P. // J. Nat. Prod. 1999. V. 62. P. 283–286. https://doi.org/10.1021/np9803878
  25. Barbeau D., Guay S., Neugebauer W., Escher E. // J. Med. Chem. 1992. V. 35. P. 151–157. https://doi.org/10.1021/jm00079a020
  26. Myhre P.C. // J. Am. Chem. Soc. 1972. V. 94. P. 7921–7923. https://doi.org/10.1021/ja00777a043
  27. Olah G.A., Narang S.C., Malhotra R., Olah J.A. // J. Am. Chem. Soc. 1979. V. 101. P. 1805–1807. https://doi.org/10.1021/ja00501a028
  28. Nickson T.E. // J. Org. Chem. 1986. V. 51. P. 3903– 3904. https://doi.org/10.1021/jo00370a031
  29. Shiao M.-J., Lai L.-L., Ku W.-Sh., Lin P.-Y., Hwu J. R. // J. Org. Chem. 1993. V. 58. P. 4742–4744. https://doi.org/10.1021/jo00069a046
  30. Knorr R., Trzeciak A., Bannwarth W., Gillessen D. // Tetrahedron Lett. 1989. V. 30. P. 1927–1930. https://doi.org/10.1016/S0040-4039(00)99616-3

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Chromatograms of stages of the gel filtration process of the mixture of peptide (I) and low-molecular impurities, vertical lines correspond to a time interval of 2 min. (a) – Sephadex G-10 sorbent, no separation upon application of the untreated mixture; (b) – Sephadex G-10, partial separation after distillation of a significant portion of the salts with water vapor before application; (c) – Sephadex LH-20 sorbent, partial separation upon application of the untreated mixture; (d) – Sephadex LH-20 sorbent, almost complete separation after distillation of a significant portion of the salts with water vapor during lyophilization before application.

下载 (64KB)

版权所有 © Russian Academy of Sciences, 2024