综合体重管理:提升保留生育力子宫内膜癌治疗效果的关键因素

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

子宫内膜癌是一种常见的妇科肿瘤性疾病,其发生与肥胖以及糖脂代谢紊乱密切相关。当前针对年轻女性的保育性治疗策略旨在保留其生育功能,主要采用高剂量孕激素治疗,但该方法可能导致体重进一步增加。肥胖与子宫内膜癌治疗效果之间的关系具有多因素特征,涉及激素水平变化、慢性炎症、代谢紊乱以及肿瘤免疫微环境的改变。综合性体重管理方法,包括饮食干预(如生酮饮食、间歇性禁食、热量限制)、规律体育活动及行为疗法,已被证明能显著提高肿瘤缓解率和妊娠成功率。在本综述中,回顾了肥胖对子宫内膜癌发生与进展的关键机制,讨论了当前的体重管理策略,并指出未来的研究方向,包括代谢产物、肠道菌群、食欲神经调控机制的作用,以及结合人工智能与可穿戴设备的个体化干预方法。综合体重管理正逐渐成为提升子宫内膜癌治疗效果、改善结局的优先策略,特别适用于希望保留生育能力的患者。

全文:

受限制的访问

作者简介

Anna K. Kryukova

Rostov State Medical University

编辑信件的主要联系方式.
Email: glable@bk.ru
ORCID iD: 0009-0007-7809-7892
俄罗斯联邦, Rostov-on-Don

Ksenia Yu. Kosykh

Rostov State Medical University

Email: kosyhksenia2003@mail.ru
ORCID iD: 0009-0005-3744-5446
俄罗斯联邦, Rostov-on-Don

Arina P. Romanchenko

Voronezh State Medical University named after N.N. Burdenko

Email: frau.roman4enko2010@yandex.ru
ORCID iD: 0009-0009-3367-7820
俄罗斯联邦, Voronezh

Yana V. Belyaeva

Bashkir State Medical University

Email: yana.belyaeva123@mail.ru
ORCID iD: 0009-0001-1872-4440
俄罗斯联邦, Ufa

Svetlana A. Budzinskaya

Saint-Petersburg State Pediatric Medical University

Email: Svetoch5224@gmail.com
ORCID iD: 0009-0000-2291-7467
俄罗斯联邦, St. Petersburg

Valeria S. Alekseeva

Bashkir State Medical University

Email: valeks.2025@mail.ru
ORCID iD: 0009-0008-5774-5771
俄罗斯联邦, Ufa

Sofia A. Lozovaya

City Clinical Hospital No. 20

Email: lozisss@yandex.ru
ORCID iD: 0009-0009-9881-1592
俄罗斯联邦, Rostov-on-Don

Airat I. Ishberdin

Bashkir State Medical University

Email: airatok17@gmail.com
ORCID iD: 0009-0003-0201-1854
俄罗斯联邦, Ufa

Anastasia A. Ishberdina

Bashkir State Medical University

Email: Abatrunova@gmail.com
ORCID iD: 0009-0000-3963-4922
俄罗斯联邦, Ufa

Nikita A. Krysin

Bashkir State Medical University

Email: buran007@list.ru
ORCID iD: 0009-0003-3428-702X
俄罗斯联邦, Ufa

Valeria A. Tudiyarova

Bashkir State Medical University

Email: victoriatt1337@gmail.com
ORCID iD: 0009-0002-6796-2469
俄罗斯联邦, Ufa

Ramilya R. Yadigarova

Samara State Medical University

Email: ramilaadigarova@mail.ru
ORCID iD: 0009-0007-8999-0862
俄罗斯联邦, Samara

Nuria D. Zainullina

Bashkir State Medical University

Email: zaynullina.nuriya@gmail.com
ORCID iD: 0009-0001-2831-8454
俄罗斯联邦, Ufa

Ekaterina S. Derun

Kuban State Medical University

Email: derun.katya@mail.ru
ORCID iD: 0009-0008-9163-9390
俄罗斯联邦, Krasnodar

参考

  1. Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229–263. doi: 10.3322/caac.21834
  2. Sabantsev MA, Shramko SV, Zhilina NM, et al. Trends in incidence and prevalence of endometrial cancer in Russia and Novokuznetsk: a 2004–2021 study. Bulleten Medicinskoj Nauki. 2023;1(29):16–23. doi: 10.31684/25418475-2023-1-16 EDN: YUDVEI
  3. Nechushkina VM, Kolomiets LA, Kravets OA, et al. Practical recommendations for the drug treatment of uterine cancer and uterine sarcoma. Malignant Tumors. 2021;11(3S2-1):218–232. doi: 10.18027/2224-5057-2021-11-3s2-14 EDN: IGECPX
  4. Ga H, Taguchi A, Honjoh H, et al. Prognosis of patients with endometrial cancer or atypical endometrial hyperplasia after complete remission with fertility-sparing therapy. Arch Gynecol Obstet. 2023;308(5):1629–1634. doi: 10.1007/s00404-023-07077-7
  5. Management of endometrial intraepithelial neoplasia or atypical endometrial hyperplasia: ACOG clinical consensus No. 5. Obstet Gynecol. 2023;142(3):735–744. doi: 10.1097/AOG.0000000000005297
  6. Kedrova AG, Krasilnikov SE, Berishvili AI, Zvezdkina EA. Expanding therapeutic opportunities for progressive uterine cancer: clinical experience. Tumors of Female Reproductive System. 2022;18(1):103–110. doi: 10.17650/1994-4098-2022-18-1-103-110 EDN: DMDGUO
  7. King L, Gajarawala S, McCrary MD. Endometrial cancer and obesity: addressing the awkward silence. JAAPA. 2023;36(1):28–31. doi: 10.1097/01.JAA.0000902884.01725.a3
  8. Rütten H, Verhoef C, van Weelden WJ, et al. Recurrent endometrial cancer: local and systemic treatment options. Cancers (Basel). 2021;13(24):6275. doi: 10.3390/cancers13246275
  9. Volkova NI, Degtyareva YuS. Mechanisms of fertility disorders in obese women. Medical Herald of the South of Russia. 2020;11(3):15–19. doi: 10.21886/2219-8075-2020-11-3-15-19 EDN: SDONKD
  10. Levi F, La Vecchia C, Negri E, et al. Body mass at different ages and subsequent endometrial cancer risk. Int J Cancer. 1992;50(4):567–571. doi: 10.1002/ijc.2910500413
  11. Mustafina SV, Vinter DA, Alferova VI. Influence of obesity on the formation and development of cancer. Obesity and Metabolism. 2024;21(2):205–214. doi: 10.14341/omet13025 EDN: HGLCXT
  12. Lauby-Secretan B, Scoccianti C, Loomis D, et al. International agency for research on cancer handbook working group. body fatness and cancer—viewpoint of the IARC working group. N Engl J Med. 2016;375(8):794–798. doi: 10.1056/NEJMsr1606602
  13. Recalde M, Pistillo A, Davila-Batista V, et al. Longitudinal body mass index and cancer risk: a cohort study of 2.6 million Catalan adults. Nat Commun. 2023;14(1):3816. doi: 10.1038/s41467-023-39282-y
  14. Sung H, Siegel RL, Torre LA, et al. Global patterns in excess body weight and the associated cancer burden. CA Cancer J Clin. 2019;69(2):88–112. doi: 10.3322/caac.21499
  15. Terzic M, Aimagambetova G, Kunz J, et al. Molecular basis of endometriosis and endometrial cancer: current knowledge and future perspectives. Int J Mol Sci. 2021;22(17):9274. doi: 10.3390/ijms22179274
  16. Li X, Fan Y, Wang J, et al. Insulin resistance and metabolic syndrome increase the risk of relapse for fertility preserving treatment in atypical endometrial hyperplasia and early endometrial cancer patients. Front Oncol. 2021;11:744689. doi: 10.3389/fonc.2021.744689
  17. Pavlov AYu, Dzidzariya AG, Kalinchenko SYu, Muravyeva PV. Modern view of the problem: the influence of obesity as a key component of metabolic syndrome on the development and progression of endometrial cancer. Malignant Tumours. 2024;14(2):75–82. doi: 10.18027/2224-5057-2024-010 EDN: GYOYYD
  18. Stępień S, Olczyk P, Gola J, et al. The role of selected adipocytokines in ovarian cancer and endometrial cancer. Cells. 2023;12(8):1118. doi: 10.3390/cells12081118
  19. Yang X, Wang J. The role of metabolic syndrome in endometrial cancer: a review. Front Oncol. 2019;9:744. doi: 10.3389/fonc.2019.00744
  20. Vasim I, Majeed CN, DeBoer MD. Intermittent fasting and metabolic health. Nutrients. 2022;14(3):631. doi: 10.3390/nu14030631
  21. Rawat K, Singh N, Kumari P, Saha L. A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective. Rev Neurosci. 2020;32(2):143–157. doi: 10.1515/revneuro-2020-0078
  22. MoTrPAC Study Group; Lead Analysts; MoTrPAC Study Group. Temporal dynamics of the multi-omic response to endurance exercise training. Nature. 2024;629(8010):174–183. doi: 10.1038/s41586-023-06877-w
  23. Wen Q, Ma QH, Li LZ, et al. Research trends and hotspots in exercise rehabilitation for coronary heart disease: A bibliometric analysis. Medicine (Baltimore). 2023;102(50):e36511. doi: 10.1097/MD.0000000000036511
  24. Rampioni Vinciguerra GL, Capece M, Reggiani Bonetti L, et al. Nutrient restriction-activated Fra-2 promotes tumor progression via IGF1R in miR-15a downmodulated pancreatic ductal adenocarcinoma. Signal Transduct Target Ther. 2024;9(1):31. doi: 10.1038/s41392-024-01740-4
  25. Mishra A, Giuliani G, Longo VD. Nutrition and dietary restrictions in cancer prevention. Biochim Biophys Acta Rev Cancer. 2024;1879(1):189063. doi: 10.1016/j.bbcan.2023.189063
  26. Wolfe AR, Cui T, Baie S, et al. Nutrient scavenging-fueled growth in pancreatic cancer depends on caveolae-mediated endocytosis under nutrient-deprived conditions. Sci Adv. 2024;10(9):eadj3551. doi: 10.1126/sciadv.adj3551
  27. Friedenreich CM, Ryder-Burbidge C, McNeil J. Physical activity, obesity and sedentary behavior in cancer etiology: epidemiologic evidence and biologic mechanisms. Mol Oncol. 2021;15(3):790–800. doi: 10.1002/1878-0261.12772
  28. Storck EM, Özbalci C, Eggert US. Lipid cell biology: a focus on lipids in cell division. Annu Rev Biochem. 2018;87:839–869. doi: 10.1146/annurev-biochem-062917-012448
  29. Morigny P, Boucher J, Arner P, Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol. 2021;17(5):276–295. doi: 10.1038/s41574-021-00471-8
  30. Gen Y, Yun J, Ahn J, et al. Nutritional index in relation to prognosis of endometrial cancer. Int J Med Sci. 2024;21(1):169–174. doi: 10.7150/ijms.87752
  31. Zhou R, Yang Y, Lu Q, et al. Prognostic factors of oncological and reproductive outcomes in fertility-sparing treatment of complex atypical hyperplasia and low-grade endometrial cancer using oral progestin in Chinese patients. Gynecol Oncol. 2015;139(3):424–428. doi: 10.1016/j.ygyno.2015.09.078
  32. Lortet-Tieulent J, Ferlay J, Bray F, Jemal A. International patterns and trends in endometrial cancer incidence, 1978–2013. J Natl Cancer Inst. 2018;110(4):354–361. doi: 10.1093/jnci/djx214
  33. Li M, Guo T, Cui R, et al. Weight control is vital for patients with early-stage endometrial cancer or complex atypical hyperplasia who have received progestin therapy to spare fertility: a systematic review and meta-analysis. Cancer Manag Res. 2019;11:4005–4021. doi: 10.2147/CMAR.S194607
  34. Gorbatenko NV, Bezhenar VF, Fishman MB. Obesity and reproductive health of women. Obesity and Metabolism. 2017;14(1):3–8. doi: 10.14341/omet201713-8 EDN: YRUSJB
  35. Li X, Guo YR, Lin JF, et al. Combination of Diane-35 and metformin to treat early endometrial carcinoma in PCOS women with insulin resistance. J Cancer. 2014;5(3):173–181. doi: 10.7150/jca.8009
  36. Gonthier C, Walker F, Luton D, et al. Impact of obesity on the results of fertility-sparing management for atypical hyperplasia and grade 1 endometrial cancer. Gynecol Oncol. 2014;133(1):33–37. doi: 10.1016/j.ygyno.2013.11.007
  37. Kokts-Porietis RL, Elmrayed S, Brenner DR, Friedenreich CM. Obesity and mortality among endometrial cancer survivors: A systematic review and meta-analysis. Obes Rev. 2021;22(12):e13337. doi: 10.1111/obr.13337
  38. Khandekar MJ, Cohen P, Spiegelman BM. Molecular mechanisms of cancer development in obesity. Nat Rev Cancer. 2011;11(12):886–895. doi: 10.1038/nrc3174
  39. Dana N, Ferns GA, Nedaeinia R, Haghjooy Javanmard S. Leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ. Clin Transl Oncol. 2023;25(3):601–610. doi: 10.1007/s12094-022-02988-4
  40. Dai M, Yang B, Chen J, et al. Nuclear-translocation of ACLY induced by obesity-related factors enhances pyrimidine metabolism through regulating histone acetylation in endometrial cancer. Cancer Lett. 2021;513:36–49. doi: 10.1016/j.canlet.2021.04.024
  41. Tewari D, Patni P, Bishayee A, et al. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin Cancer Biol. 2022;80:1–17. doi: 10.1016/j.semcancer.2019.12.008
  42. Słabuszewska-Jóźwiak A, Lukaszuk A, Janicka-Kośnik M, et al. Role of leptin and adiponectin in endometrial cancer. Int J Mol Sci. 2022;23(10):5307. doi: 10.3390/ijms23105307
  43. Saikia BB, Bhowmick S, Malat A, et al. ICAM-1 deletion using CRISPR/Cas9 protects the brain from traumatic brain injury-induced inflammatory leukocyte adhesion and transmigration cascades by attenuating the Paxillin/FAK-dependent Rho GTPase pathway. J Neurosci. 2024;44(11):e1742232024. doi: 10.1523/JNEUROSCI.1742-23.2024
  44. Ye L, Wen X, Qin J, et al. Metabolism-regulated ferroptosis in cancer progression and therapy. Cell Death Dis. 2024;15(3):196. doi: 10.1038/s41419-024-06584-y
  45. Ding Y, Fan Y, Li X, et al. Metabolic syndrome is an independent risk factor for time to complete remission of fertility-sparing treatment in atypical endometrial hyperplasia and early endometrial carcinoma patients. Reprod Biol Endocrinol. 2022;20(1):134. doi: 10.1186/s12958-022-01006-0
  46. van den Bosch AAS, Pijnenborg JMA, Romano A, et al. The impact of adipose tissue distribution on endometrial cancer: a systematic review. Front Oncol. 2023;13:1182479. doi: 10.3389/fonc.2023.1182479
  47. Qiu C, Dongol S, Lv QT, et al. Sterol regulatory element-binding protein-1/fatty acid synthase involvement in proliferation inhibition and apoptosis promotion induced by progesterone in endometrial cancer. Int J Gynecol Cancer. 2013;23(9):1629–1634. doi: 10.1097/IGC.0000000000000004
  48. McDonald ME, Bender DP. Endometrial cancer: obesity, genetics, and targeted agents. Obstet Gynecol Clin North Am. 2019;46(1):89–105. doi: 10.1016/j.ogc.2018.09.006
  49. Takahashi H, Kawabata-Iwakawa R, Ida S, et al. Upregulated glycolysis correlates with tumor progression and immune evasion in head and neck squamous cell carcinoma. Sci Rep. 2021;11(1):17789. doi: 10.1038/s41598-021-97292-6
  50. Reinfeld BI, Madden MZ, Wolf MM, et al. Cell-programmed nutrient partitioning in the tumour microenvironment. Nature. 2021;593(7858): 282–288. doi: 10.1038/s41586-021-03442-1
  51. Fendt SM. 100 years of the Warburg effect: A cancer metabolism endeavor. Cell. 2024;187(15):3824–3828. doi: 10.1016/j.cell.2024.06.026
  52. Thompson CB, Vousden KH, Johnson RS, et al. A century of the Warburg effect. Nat Metab. 2023;5(11):1840–1843. doi: 10.1038/s42255-023-00927-3
  53. Xu D, Wang Z, Xia Y, et al. The gluconeogenic enzyme PCK1 phosphorylates INSIG1/2 for lipogenesis. Nature. 2020;580(7804):530–535. doi: 10.1038/s41586-020-2183-2
  54. De Martino M, Rathmell JC, Galluzzi L, Vanpouille-Box C. Cancer cell metabolism and antitumour immunity. Nat Rev Immunol. 2024;24(9):654–669. doi: 10.1038/s41577-024-01026-4
  55. Kong LR, Gupta K, Wu AJ, et al. A glycolytic metabolite bypasses “two-hit” tumor suppression by BRCA2. Cell. 2024;187(9):2269–2287.e16. doi: 10.1016/j.cell.2024.03.006
  56. Shi Q, Shen Q, Liu Y, et al. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell. 2022;40(10):1207–1222.e10. doi: 10.1016/j.ccell.2022.08.012
  57. Wang Y, Zhou R, Zhang X, et al. Significance of serum and pathological biomarkers in fertility-sparing treatment for endometrial cancer or atypical hyperplasia: a retrospective cohort study. BMC Womens Health. 2021;21(1):252. doi: 10.1186/s12905-021-01383-5
  58. Wang Y, Zhou R, Wang H, et al. Impact of treatment duration in fertility-preserving management of endometrial cancer or atypical endometrial hyperplasia. Int J Gynecol Cancer. 2019;29(4):699–704. doi: 10.1136/ijgc-2018-000081
  59. Žalytė E. Ferroptosis, metabolic rewiring, and endometrial cancer. Int J Mol Sci. 2023;25(1):75. doi: 10.3390/ijms25010075
  60. Spiezio Sardo A, Farrugia M, Grynberg M, et al. ESGO/ESHRE/ESGE Guidelines for the fertility-sparing treatment of patients with endometrial carcinoma. Int J Gynecol Cancer. 2023;33(2):208–222. doi: 10.1136/ijgc-2022-004047
  61. Chen J, Cao D, Yang J, et al. Fertility-sparing treatment for endometrial cancer or atypical endometrial hyperplasia patients with obesity. Front Oncol. 2022;12:812346. doi: 10.3389/fonc.2022.812346
  62. Altea-Manzano P, Cuadros AM, Broadfield LA, Fendt SM. Nutrient metabolism and cancer in the in vivo context: a metabolic game of give and take. EMBO Rep. 2020;21(10):e50635. doi: 10.15252/embr.202050635
  63. Amiri Khosroshahi R, Talebi S, Zeraattalab-Motlagh S, et al. Nutritional interventions for the prevention and treatment of cancer therapy-induced oral mucositis: an umbrella review of systematic reviews and meta-analysis. Nutr Rev. 2023;81(9):1200–1212. doi: 10.1093/nutrit/nuac105
  64. Li J, Yang H, Zhang L, et al. Metabolic reprogramming and interventions in endometrial carcinoma. Biomed Pharmacother. 2023;161:114526. doi: 10.1016/j.biopha.2023.114526
  65. Davern M, Donlon NE, O’Connell F, et al. Nutrient deprivation and hypoxia alter T cell immune checkpoint expression: potential impact for immunotherapy. J Cancer Res Clin Oncol. 2023;149(8):5377–5395. doi: 10.1007/s00432-022-04440-0
  66. Jin J, Byun JK, Choi YK, Park KG. Targeting glutamine metabolism as a therapeutic strategy for cancer. Exp Mol Med. 2023;55(4):706–715. doi: 10.1038/s12276-023-00971-9
  67. Kim M, Hwang S, Jeong SM. Targeting cellular adaptive responses to glutaminolysis perturbation for cancer therapy. Mol Cells. 2024;47(8):100096. doi: 10.1016/j.mocell.2024.100096
  68. Yang WH, Qiu Y, Stamatatos O, et al. Enhancing the efficacy of glutamine metabolism inhibitors in cancer therapy. Trends Cancer. 2021;7(8):790–804. doi: 10.1016/j.trecan.2021.04.003
  69. Pedersen KS, Gatto F, Zerahn B, et al. Exercise-mediated lowering of glutamine availability suppresses tumor growth and attenuates muscle wasting. iScience. 2020;23(4):100978. doi: 10.1016/j.isci.2020.100978
  70. Guo C, He Y, Chen L, et al. Integrated bioinformatics analysis and experimental validation reveals fatty acid metabolism-related prognostic signature and immune responses for uterine corpus endometrial carcinoma. Front Oncol. 2022;12:1030246. doi: 10.3389/fonc.2022.1030246
  71. Steinberg GR, Hardie DG. New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 2023;24(4):255–272. doi: 10.1038/s41580-022-00547-x
  72. Wang N, Wang B, Maswikiti EP, et al. AMPK-a key factor in crosstalk between tumor cell energy metabolism and immune microenvironment? Cell Death Discov. 2024;10(1):237. doi: 10.1038/s41420-024-02011-5
  73. Taylor SR, Falcone JN, Cantley LC, Goncalves MD. Developing dietary interventions as therapy for cancer. Nat Rev Cancer. 2022;22(8):452–466. doi: 10.1038/s41568-022-00485-y
  74. Gao X, Sanderson SM, Dai Z, et al. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature. 2019;572(7769):397–401. doi: 10.1038/s41586-019-1437-3
  75. Cohen CW, Fontaine KR, Arend RC, Gower BA. A ketogenic diet is acceptable in women with ovarian and endometrial cancer and has no adverse effects on blood lipids: a randomized, controlled trial. Nutr Cancer. 2020;72(4):584–594. doi: 10.1080/01635581.2019.1645864
  76. Delconte RB, Owyong M, Santosa EK, et al. Fasting reshapes tissue-specific niches to improve NK cell-mediated anti-tumor immunity. Immunity. 2024;57(8):1923–1938.e7. doi: 10.1016/j.immuni.2024.05.021
  77. Chung KW, Chung HY. The effects of calorie restriction on autophagy: role on aging intervention. Nutrients. 2019;11(12):2923. doi: 10.3390/nu11122923
  78. Martinez-Lopez N, Tarabra E, Toledo M, et al. System-wide benefits of intermeal fasting by autophagy. Cell Metab. 2017;26(6):856–871.e5. doi: 10.1016/j.cmet.2017.09.020
  79. Mizushima N, Levine B. Autophagy in human diseases. N Engl J Med. 2020;383(16):1564–1576. doi: 10.1056/NEJMra2022774
  80. Jamshed H, Beyl RA, Della Manna DL, et al. Early time-restricted feeding improves 24-hour glucose levels and affects markers of the circadian clock, aging, and autophagy in humans. Nutrients. 2019;11(6):1234. doi: 10.3390/nu11061234
  81. Dedov II, Mokrysheva NG, Mel’nichenko GA, et al. Obesity. Clinical guidelines. Consilium Medicum. 2021;23 (4):311–325. doi: 10.26442/20751753.2021.4.200832 EDN: GYUVLJ
  82. Peck SS, Esmaeilzadeh M, Rankin K, et al. Self-reported physical activity, qol, cardiac function, and cardiorespiratory fitness in women with HER2+ breast cancer. JACC CardioOncol. 2022;4(3):387–400. doi: 10.1016/j.jaccao.2022.06.006
  83. Fiuza-Luces C, Valenzuela PL, Gálvez BG, et al. The effect of physical exercise on anticancer immunity. Nat Rev Immunol. 2024;24(4):282–293. doi: 10.1038/s41577-023-00943-0
  84. Amar D, Gay NR, Jimenez-Morales D, et al. The mitochondrial multi-omic response to exercise training across rat tissues. Cell Metab. 2024;36(6):1411–1429.e10. doi: 10.1016/j.cmet.2023.12.021
  85. Moore SC, Lee IM, Weiderpass E, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med. 2016;176(6):816–825. doi: 10.1001/jamainternmed.2016.1548
  86. Schwartz AR, Bartlett DB, Johnson JL, et al. A pilot study of home-based exercise and personalized nutrition counseling intervention in endometrial cancer survivors. Front Oncol. 2021;11:669961. doi: 10.3389/fonc.2021.669961
  87. Gorzelitz JS, Stoller S, Costanzo E, et al. Improvements in strength and agility measures of functional fitness following a telehealth-delivered home-based exercise intervention in endometrial cancer survivors. Support Care Cancer. 2022;30(1):447–455. doi: 10.1007/s00520-021-06415-2
  88. Stamatakis E, Ahmadi MN, Friedenreich CM, et al. Vigorous intermittent lifestyle physical activity and cancer incidence among nonexercising adults: the UK Biobank accelerometry study. JAMA Oncol. 2023;9(9):1255–1259. doi: 10.1001/jamaoncol.2023.1830
  89. Zhu W, Geng W, Huang L, et al. Who could and should give exercise prescription: Physicians, exercise and health scientists, fitness trainers, or ChatGPT? J Sport Health Sci. 2024;13(3):368–372. doi: 10.1016/j.jshs.2024.01.001
  90. López-Bueno R, Ahmadi M, Stamatakis E, et al. Prospective associations of different combinations of aerobic and muscle-strengthening activity with all-cause, cardiovascular, and cancer mortality. JAMA Intern Med. 2023;183(9):982–990. doi: 10.1001/jamainternmed.2023.3093
  91. Laskov I, Zilberman A, Maltz-Yacobi L, et al. Effect of BMI change on recurrence risk in patients with endometrial cancer. Int J Gynecol Cancer. 2023;33(5):713–718. doi: 10.1136/ijgc-2022-004245
  92. Yoshida K, Kondo E, Ishida M, et al. Visceral adipose tissue percentage compared to body mass index as better indicator of surgical outcomes in women with obesity and endometrial cancer. J Minim Invasive Gynecol. 2024;31(5):445–452. doi: 10.1016/j.jmig.2024.02.009
  93. Pyo JY, Ahn SS, Lee LE, et al. New body mass index for predicting prognosis in patients with antineutrophil cytoplasmic antibody-associated vasculitis. J Clin Lab Anal. 2022;36(5):e24357. doi: 10.1002/jcla.24357
  94. Han M, Qin P, Li Q, et al. Chinese visceral adiposity index: A reliable indicator of visceral fat function associated with risk of type 2 diabetes. Diabetes Metab Res Rev. 2021;37(2):e3370. doi: 10.1002/dmrr.3370
  95. Thomas DM, Bredlau C, Bosy-Westphal A, et al. Relationships between body roundness with body fat and visceral adipose tissue emerging from a new geometrical model. Obesity (Silver Spring). 2013;21(11):2264–2271. doi: 10.1002/oby.20408
  96. Aune D, Navarro Rosenblatt DA, Chan DS, et al. Anthropometric factors and endometrial cancer risk: a systematic review and dose-response meta-analysis of prospective studies. Ann Oncol. 2015;26(8):1635–1648. doi: 10.1093/annonc/mdv142
  97. Bo LL, Wang YQ, Liu YY, et al. [Analyze of obesity indicators and effect of fertility preservation treatment in patients with endometrial atypical hyperplasia and early endometrial cancer]. Zhonghua Fu Chan Ke Za Zhi. 2022;57(10):767–774. doi: 10.3760/cma.j.cn112141-20220727-00487
  98. Abbasi J. FDA green-lights tirzepatide, marketed as zepbound, for chronic weight management. JAMA. 2023;330(22):2143–2144. doi: 10.1001/jama.2023.24539
  99. Griauzde DH, Turner CD, Othman A, et al. A primary care-based weight navigation program. JAMA Netw Open. 2024;7(5):e2412192. doi: 10.1001/jamanetworkopen.2024.12192
  100. Barr CE, Ryan NAJ, Derbyshire AE, et al. Weight loss during intrauterine progestin treatment for obesity-associated atypical hyperplasia and early-stage cancer of the endometrium. Cancer Prev Res (Phila). 2021;14(11):1041–1050. doi: 10.1158/1940-6207.CAPR-21-0229
  101. Park JY, Seong SJ, Kim TJ, et al. Significance of body weight change during fertility-sparing progestin therapy in young women with early endometrial cancer. Gynecol Oncol. 2017;146(1):39–43. doi: 10.1016/j.ygyno.2017.05.002
  102. Chen Y, Yang J, Wan Y, et al. DEAR model in overweight endometrial cancer patients undergoing fertility-sparing treatment: A randomized controlled trial. Gynecol Oncol. 2024;185:148–155. doi: 10.1016/j.ygyno.2024.02.017
  103. Jeong HG, Cho S, Ryu KJ, et al. Effect of weight loss before in vitro fertilization in women with obesity or overweight and infertility: a systematic review and meta-analysis. Sci Rep. 2024;14(1):6153. doi: 10.1038/s41598-024-56818-4
  104. Shan Y, Qin M, Yin J, et al. Effect and management of excess weight in the context of fertility-sparing treatments in patients with atypical endometrial hyperplasia and endometrial cancer: eight-year experience of 227 cases. Front Oncol. 2021;11:749881. doi: 10.3389/fonc.2021.749881
  105. Creanga AA, Catalano PM, Bateman BT. Obesity in pregnancy. N Engl J Med. 2022;387(3):248–259. doi: 10.1056/NEJMra1801040
  106. Gan HW, Cerbone M, Dattani MT. Appetite- and weight-regulating neuroendocrine circuitry in hypothalamic obesity. Endocr Rev. 2024;45(3):309–342. doi: 10.1210/endrev/bnad033
  107. Ly T, Oh JY, Sivakumar N, et al. Sequential appetite suppression by oral and visceral feedback to the brainstem. Nature. 2023;624(7990):130–137. doi: 10.1038/s41586-023-06758-2
  108. Bojkova D, Bechtel M, Rothenburger T, et al. Drug sensitivity of currently circulating mpox viruses. N Engl J Med. 2023;388(3):279–281. doi: 10.1056/NEJMc2212136
  109. Xu Y, Ma K, Zhang L, Li G. Supercharging cancer-fighting T cells with lithium carbonate. Cell Metab. 2024;36(3):463–465. doi: 10.1016/j.cmet.2024.02.006
  110. Shaikh SR, Beck MA, Alwarawrah Y, MacIver NJ. Emerging mechanisms of obesity-associated immune dysfunction. Nat Rev Endocrinol. 2024;20(3):136–148. doi: 10.1038/s41574-023-00932-2
  111. Zhao LY, Mei JX, Yu G, et al. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther. 2023;8(1):201. doi: 10.1038/s41392-023-01406-7
  112. Couzin-Frankel J. Obesity meets its match. Science. 2023;382(6676):1226–1227. doi: 10.1126/science.adn4691

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ:
ПИ № ФС 77 - 86335 от 11.12.2023 г.  
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ:
ЭЛ № ФС 77 - 80633 от 15.03.2021 г.