Modern technologies in the study of clinical heterogeneity and molecular subtypes of pre-eclampsia
- Authors: Gololobova M.N.1, Nikitina N.A.1, Sidorova I.S.1, Ageev M.B.1, Amiraslanova N.I.1
-
Affiliations:
- I.M. Sechenov First Moscow State Medical University
- Issue: Vol 12, No 2 (2025)
- Pages: 151-161
- Section: Reviews
- Submitted: 29.10.2024
- Accepted: 27.12.2024
- Published: 10.06.2025
- URL: https://archivog.com/2313-8726/article/view/640155
- DOI: https://doi.org/10.17816/aog640155
- EDN: https://elibrary.ru/VSINSX
- ID: 640155
Cite item
Abstract
This review focuses on modern technologies for investigating the pathogenic mechanisms of pre-eclampsia—a serious pregnancy complication that remains one of the leading causes of maternal and perinatal morbidity and mortality. Over the past decades, global scientific research has made significant advances in the study of pre-eclampsia, particularly its pathogenesis. Key roles have been identified for oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, inflammation, and secondary endothelial dysfunction, as well as for angiogenic and anti-angiogenic factors, activation of the complement cascade, and the hemostatic system. Nevertheless, highly effective methods for predicting, preventing, and treating this pregnancy complication have not yet been developed. A possible reason, which has been receiving increasing attention in recent years, may lie in the existence of multiple subtypes of pre-eclampsia that differ in molecular mechanisms of development, severity and extent of lesions, as well as maternal and perinatal outcomes. In this regard, there is a need for deeper and more comprehensive exploration of the pathophysiology of pre-eclampsia using innovative high-throughput technologies that allow for simultaneous assessment of the full spectrum of systemic changes associated with pre-eclampsia. Such requirements are met by Big Data technologies utilizing various omics platforms, including epigenomics, genomics, transcriptomics, proteomics, metabolomics, and others. This article reviews the findings of published studies investigating the transcriptome, proteome, and peptidome of biological fluids and placental tissue in pregnant women with different clinical phenotypes of pre-eclampsia. When considered alongside clinical and anamnestic data and histological variants of placental changes, these findings allow for the identification of molecular subtypes of pre-eclampsia. The review demonstrates that the clinical heterogeneity of pre-eclampsia is driven by the wide variability of underlying molecular and genetic mechanisms. Special attention is given to studies employing a multi-omics approach. The analysis of publications in this review underscores the importance of accounting for identified molecular subtypes in the development of personalized management strategies for pregnant women, as well as individualized approaches to prediction and prevention of pre-eclampsia and evidence-based pregnancy prolongation or early delivery. The article also presents promising directions for further research into the pathophysiology of pre-eclampsia using omics technologies, the accumulation and analysis of which may contribute to improving the diagnosis, prevention, and treatment of this pregnancy complication through the development of potential biomarkers and molecular targets.
Keywords
Full Text

About the authors
Mariia N. Gololobova
I.M. Sechenov First Moscow State Medical University
Email: gololobova.mar@gmail.com
ORCID iD: 0009-0002-9141-8631
Resident
Russian Federation, MoscowNatalya A. Nikitina
I.M. Sechenov First Moscow State Medical University
Email: natnikitina@list.ru
ORCID iD: 0000-0001-8659-9963
SPIN-code: 8344-1517
MD, Dr. Sci. (Medicine)
Russian Federation, MoscowIraida S. Sidorova
I.M. Sechenov First Moscow State Medical University
Email: sidorovais@yandex.ru
ORCID iD: 0000-0003-2209-8662
SPIN-code: 3823-8259
Academician of RAS, MD, Dr. Sci. (Medicine)
Russian Federation, MoscowMikhail B. Ageev
I.M. Sechenov First Moscow State Medical University
Email: mikhaageev@yandex.ru
ORCID iD: 0000-0002-6603-804X
SPIN-code: 3122-7420
MD, Cand. Sci. (Medicine), Assistant Lecturer
Russian Federation, MoscowNigar I. Amiraslanova
I.M. Sechenov First Moscow State Medical University
Author for correspondence.
Email: amiraslanova00@mail.ru
ORCID iD: 0009-0008-7446-3995
Resident
Russian Federation, MoscowReferences
- Clinical recommendations: Preeclampsia. Eclampsia. Edema, proteinuria and hypertensive disorders during pregnancy, childbirth and the postpartum period (05.09.2024). Approved by the Ministry of Health of the Russian Federation. Moscow; 2024. (In Russ.)
- Dimitriadis E, Rolnik DL, Zhou W, et al. Pre-eclampsia. Nat Rev Dis Primers. 2023;9(1):8. doi: 10.1038/s41572-023-00417-6
- Poon LC, Shennan A, Hyett JA, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145(Suppl 1):1–33. doi: 10.1002/ijgo.12802
- Maternal mortality [Internet]. Who.int. [cited 2024 Oct 25]. Available from: https://www.who.int/news-room/fact-sheets/detail/maternal-mortality
- Pittara T, Vyrides A, Lamnisos D, Giannakou K. Pre-eclampsia and long-term health outcomes for mother and infant: an umbrella review. BJOG. 2021;128(9):1421–1430. doi: 10.1111/1471-0528.16683
- Turbeville HR, Sasser JM. Preeclampsia beyond pregnancy: long-term consequences for mother and child. Am J Physiol Renal Physiol. 2020;318(6):F1315–F1326. doi: 10.1152/ajprenal.00071.2020
- Magee LA, Brown MA, Hall DR, et al. The 2021 International society for the study of hypertension in pregnancy classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2022;27:148–169. doi: 10.1016/j.preghy.2021.09.008
- Roberts JM, Rich-Edwards JW, McElrath TF, et al. Subtypes of preeclampsia: recognition and determining clinical usefulness. Hypertension. 2021;77(5):1430–1441. doi: 10.1161/hypertensionaha.120.14781
- Redman CWG, Staff AC, Roberts JM. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am J Obstet Gynecol. 2022;226(2S):S907–S927. doi: 10.1016/j.ajog.2020.09.047
- Staff AC. The two-stage placental model of preeclampsia: An update. J Reprod Immunol. 2019;134–135:1–10. doi: 10.1016/j.jri.2019.07.004
- Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019:l2381. doi: 10.1136/bmj.l2381
- Hu M, Li J, Baker PN, Tong C. Revisiting preeclampsia: a metabolic disorder of the placenta. FEBS J. 2022;289(2):336–354. doi: 10.1111/febs.15745
- Nzelu D, Dumitrascu-Biris D, Nicolaides KH, Kametas NA. Chronic hypertension: first-trimester blood pressure control and likelihood of severe hypertension, preeclampsia, and small for gestational age. Am J Obstet Gynecol. 2018;218(3):337.e1–337.e7. doi: 10.1016/j.ajog.2017.12.235
- Panaitescu AM, Syngelaki A, Prodan N, et al. Chronic hypertension and adverse pregnancy outcome: a cohort study. Ultrasound Obstet Gynecol. 2017;50(2):228–235. doi: 10.1002/uog.17493
- He B, Huang Z, Huang C, Nice EC. Clinical applications of plasma proteomics and peptidomics: Towards precision medicine. Proteomics Clin Appl. 2022;16(6). doi: 10.1002/prca.202100097
- Boroń D, Kornacki J, Gutaj P, et al. Corin — the early marker of preeclampsia in pregestational diabetes mellitus. J Clin Med. 2022;12(1):61. doi: 10.3390/jcm12010061
- Kattah A. Preeclampsia and kidney disease: deciphering cause and effect. Curr Hypertens Rep. 2020;22(11):91. doi: 10.1007/s11906-020-01099-1
- De Carolis S, Garufi C, Garufi E, et al. Autoimmune congenital heart block: a review of biomarkers and management of pregnancy. Front Pediatr. 2020;8:607515. doi: 10.3389/fped.2020.607515
- Esteve-Valverde E, Alijotas-Reig J, Belizna C, et al. Low complement levels are related to poor obstetric outcomes in women with obstetric antiphospholipid syndrome. The EUROAPS Registry Study Group. Placenta. 2023;136:29–34. doi: 10.1016/j.placenta.2023.04.001
- Dong Y, Yuan F, Dai Z, et al. Preeclampsia in systemic lupus erythematosus pregnancy: a systematic review and meta-analysis. Clin Rheumatol. 2020;39(2):319–325. doi: 10.1007/s10067-019-04823-8
- Jahanyar B, Tabatabaee H, Rowhanimanesh A. Harnessing deep learning for omics in an era of COVID-19. OMICS. 2023;27(4):141–152. doi: 10.1089/omi.2022.0155
- Benny PA, Alakwaa FM, Schlueter RJ, et al. A review of omics approaches to study preeclampsia. Placenta. 2020;92:17–27. doi: 10.1016/j.placenta.2020.01.008
- Hartmann S, Botha SM, Gray CM, et al. Can single-cell and spatial omics unravel the pathophysiology of pre-eclampsia? J Reprod Immunol. 2023;159:104136. doi: 10.1016/j.jri.2023.104136
- Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia: pathophysiology, challenges, and perspectives. Circ Res. 2019;124(7):1094–1112. doi: 10.1161/circresaha.118.313276
- Duhig KE, Myers J, Seed PT, et al. Placental growth factor testing to assess women with suspected pre-eclampsia: a multicentre, pragmatic, stepped-wedge cluster-randomised controlled trial. Lancet. 2019;393(10183):1807–1818. doi: 10.1016/s0140-6736(18)33212-4
- Zeisler H, Llurba E, Chantraine F, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22. doi: 10.1056/nejmoa1414838
- Szilagyi A, Gelencser Z, Romero R, et al. Placenta-specific genes, their regulation during villous trophoblast differentiation and dysregulation in preterm preeclampsia. Int J Mol Sci. 2020;21(2):628. doi: 10.3390/ijms21020628
- Campbell KA, Colacino JA, Puttabyatappa M, et al. Placental cell type deconvolution reveals that cell proportions drive preeclampsia gene expression differences. Commun Biol. 2023;6(1):264. doi: 10.1038/s42003-023-04623-6
- Vennou KE, Kontou PI, Braliou GG, Bagos PG. Meta-analysis of gene expression profiles in preeclampsia. Pregnancy Hypertens. 2020;19:52–60. doi: 10.1016/j.preghy.2019.12.007
- Guo F, Zhang B, Yang H, et al. Systemic transcriptome comparison between early- and late-onset pre-eclampsia shows distinct pathology and novel biomarkers. Cell Prolif. 2021;54(2):e12968. doi: 10.1111/cpr.12968
- Naydenov D, Vashukova E, Barbitoff Y, et al. Current status and prospects of the single-cell sequencing technologies for revealing the pathogenesis of pregnancy-associated disorders. Genes. 2023;14(3):756. doi: 10.3390/genes14030756
- Zhou W, Wang H, Yang Y, et al. Trophoblast cell subtypes and dysfunction in the placenta of individuals with preeclampsia revealed by single-cell RNA sequencing. Mol Cells. 2022;45(5):317–328. doi: 10.14348/molcells.2021.0211
- Zhang T, Bian Q, Chen Y, et al. Dissecting human trophoblast cell transcriptional heterogeneity in preeclampsia using single-cell RNA sequencing. Mol Genet Genomic Med. 2021;9(8):e1730. doi: 10.1002/mgg3.1730
- Cao J, Jiang W, Yin Z, et al. Mechanistic study of pre-eclampsia and macrophage-associated molecular networks: bioinformatics insights from multiple datasets. Front Genet. 2024;15:1376971. doi: 10.3389/fgene.2024.1376971
- Leavey K, Bainbridge SA, Cox BJ. Large scale aggregate microarray analysis reveals three distinct molecular subclasses of human preeclampsia. PLoS One. 2015;10(2):e0116508. doi: 10.1371/journal.pone.0116508
- Leavey K, Benton SJ, Grynspan D, et al. Unsupervised placental gene expression profiling identifies clinically relevant subclasses of human preeclampsia. Hypertension. 2016;68(1):137–147. doi: 10.1161/hypertensionaha.116.07293
- Benton SJ, Leavey K, Grynspan D, et al. The clinical heterogeneity of preeclampsia is related to both placental gene expression and placental histopathology. Am J Obstet Gynecol. 2018;219(6):604.e1–604.e25. doi: 10.1016/j.ajog.2018.09.036
- Gibbs I, Leavey K, Benton SJ, et al. Placental transcriptional and histologic subtypes of normotensive fetal growth restriction are comparable to preeclampsia. Am J Obstet Gynecol. 2019;220(1):110.e1–110.e21. doi: 10.1016/j.ajog.2018.10.003
- Horii M, To C, Morey R, et al. Histopathologic and transcriptomic profiling identifies novel trophoblast defects in patients with preeclampsia and maternal vascular malperfusion. Mod Pathol. 2023;36(2):100035. doi: 10.1016/j.modpat.2022.100035
- Redline RW, Ravishankar S, Bagby CM, et al. Four major patterns of placental injury: a stepwise guide for understanding and implementing the 2016 Amsterdam consensus. Mod Pathol. 2021;34(6):1074–1092. doi: 10.1038/s41379-021-00747-4
- Mateos J, Carneiro I, Corrales F, et al. Multicentric study of the effect of pre-analytical variables in the quality of plasma samples stored in biobanks using different complementary proteomic methods. J Proteomics. 2017;150:109–120. doi: 10.1016/j.jprot.2016.09.003
- Whitehead CL, Walker SP, Tong S. Measuring circulating placental RNAs to non-invasively assess the placental transcriptome and to predict pregnancy complications: Circulating RNA biomarkers for pregnancy complications. Prenat Diagn. 2016;36(11):997–1008. doi: 10.1002/pd.4934
- Rasmussen M, Reddy M, Nolan R, et al. RNA profiles reveal signatures of future health and disease in pregnancy. Nature. 2022;601(7893):422–427. doi: 10.1038/s41586-021-04249-w
- Tarca AL, Romero R, Erez O, et al. Maternal whole blood mRNA signatures identify women at risk of early preeclampsia: a longitudinal study. J Matern Fetal Neonatal Med. 2021;34(21):3463–3474. doi: 10.1080/14767058.2019.1685964
- Moufarrej MN, Vorperian SK, Wong RJ, et al. Early prediction of preeclampsia in pregnancy with cell-free RNA. Nature. 2022;602(7898):689–694. doi: 10.1038/s41586-022-04410-z
- Tambor V, Fučíková A, Lenčo J, et al. Application of proteomics in biomarker discovery: a primer for the clinician. Physiol Res. 2010;59(4):471–497. doi: 10.33549/physiolres.931758
- Huang J, Chen X, Fu X, et al. Advances in aptamer-based biomarker discovery. Front Cell Dev Biol. 2021;9:659760. doi: 10.3389/fcell.2021.659760
- Li KW, Gonzalez-Lozano MA, Koopmans F, Smit AB. Recent developments in data independent acquisition (DIA) mass spectrometry: application of quantitative analysis of the brain proteome. Front Mol Neurosci. 2020;13:564446. doi: 10.3389/fnmol.2020.564446
- Anderson NL, Anderson NG. The human plasma proteome. Mol Cell Proteomics. 2002;1(11):845–867. doi: 10.1074/mcp.r200007-mcp200
- Romero R, Nien JK, Espinoza J, et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. TJ Matern Fetal Neonatal Med. 2008;21(1):9–23. doi: 10.1080/14767050701830480
- Tarca AL, Romero R, Benshalom-Tirosh N, et al. The prediction of early preeclampsia: Results from a longitudinal proteomics study. PLoS One. 2019;14(6):e0217273. doi: 10.1371/journal.pone.0217273
- Korzeniewski SJ, Romero R, Chaiworapongsa T, et al. Maternal plasma angiogenic index-1 (placental growth factor/soluble vascular endothelial growth factor receptor-1) is a biomarker for the burden of placental lesions consistent with uteroplacental underperfusion: a longitudinal case-cohort study. Am J Obstet Gynecol. 2016;214(5):629.e1–629.e17. doi: 10.1016/j.ajog.2015.11.015
- Brosens I, Pijnenborg R, Vercruysse L, Romero R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am J Obstet Gynecol. 2011;204(3):193–201. doi: 10.1016/j.ajog.2010.08.009
- Than NG, Posta M, Györffy D, et al. Early pathways, biomarkers, and four distinct molecular subclasses of preeclampsia: the intersection of clinical, pathological, and high-dimensional biology studies. Placenta. 2022;125:10–19. doi: 10.1016/j.placenta.2022.03.009
- Erez O, Romero R, Maymon E, et al. The prediction of late-onset preeclampsia: results from a longitudinal proteomics study. PLoS One. 2017;12(7):e0181468. doi: 10.1371/journal.pone.0181468
- Stepan H, Hund M, Andraczek T. Combining biomarkers to predict pregnancy complications and redefine preeclampsia: The angiogenic-placental syndrome. Hypertension. 2020;75(4):918–926. doi: 10.1161/hypertensionaha.119.13763
- Tarca AL, Taran A, Romero R, et al. Prediction of preeclampsia throughout gestation with maternal characteristics and biophysical and biochemical markers: a longitudinal study. Am J Obstet Gynecol. 2022;226(1):126.e1–126.e22. doi: 10.1016/j.ajog.2021.01.020
- Than NG, Romero R, Tarca AL, et al. Integrated systems biology approach identifies novel maternal and placental pathways of preeclampsia. Front Immunol. 2018;9:1661. doi: 10.3389/fimmu.2018.01661
- Than NG, Romero R, Györffy D, et al. Molecular subclasses of preeclampsia characterized by a longitudinal maternal proteomics study: distinct biomarkers, disease pathways and options for prevention. J Perinat Med. 2022;51(1):51–68. doi: 10.1515/jpm-2022-0433
- Than NG, Romero R, Posta M, et al. Classification of preeclampsia according to molecular clusters with the goal of achieving personalized prevention. J Reprod Immunol. 2024;161:104172. doi: 10.1016/j.jri.2023.104172
- Schrader M. Origins, technological development, and applications of peptidomics. In: Methods in Molecular Biology. New York: Springer; 2018:3–39.
- Xu Z, Wu C, Xie F, et al. Comprehensive quantitative analysis of ovarian and breast cancer tumor peptidomes. J Proteome Res. 2015;14(1):422–433. doi: 10.1021/pr500840w
- Neves LX, Granato DC, Busso-Lopes AF, et al. Peptidomics-driven strategy reveals peptides and predicted proteases associated with oral cancer prognosis. Mol Cell Proteomics 2021;20:100004. doi: 10.1074/mcp.ra120.002227
- Checco JW. Identifying and measuring endogenous peptides through peptidomics. ACS Chem Neurosci. 2023;14(20):3728–3731. doi: 10.1021/acschemneuro.3c00546
- Krochmal M, Schanstra JP, Mischak H. Urinary peptidomics in kidney disease and drug research. Expert Opin Drug Discov. 2018;13(3):259–268. doi: 10.1080/17460441.2018.1418320
- Coelho M, Capela J, Mendes VM, et al. Peptidomics unveils distinct acetylation patterns of histone and annexin A1 in differentiated thyroid cancer. Int J Mol Sci. 2023;25(1):376. doi: 10.3390/ijms25010376
- Naryzhny S. Proteomics and Its Applications in Cancers 2.0. Int J Mol Sci. 2024;25(8):4447. doi: 10.3390/ijms25084447
- Ives CW, Sinkey R, Rajapreyar I, et al. Preeclampsia — pathophysiology and clinical presentations. J Am Coll Cardiol. 2020;76(14):1690–1702. doi: 10.1016/j.jacc.2020.08.014
Supplementary files
