Wave Functions of Positrons Channeling in [111] Direction of a Silicon Crystal

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For a positively charged particle, the repulsive uniform potentials of the three neighboring [111] chains of the silicon crystal form a small potential well with the symmetry of an equilateral triangle is described by the C3v group. The motion of a quantum particle in such a well is of interest in terms of manifestations of quantum chaos. A previously developed procedure for numerically finding the energy levels and wave functions of stationary states, taking into account the symmetry of this problem, is used to study the transverse motion of the channeling positrons with energies of 5, 6 and 20 GeV. A classification of stationary states of transverse motion of a positron is given based on the theory of group representations. The wave functions of the stationary states in an axially symmetric potential well are also found, and it is shown how these functions are modified under the influence of a perturbation with the symmetry of an equilateral triangle. In the upper part of the triangular potential well, the classical motion is chaotic for the majority of initial conditions. The structure of the wave functions in this domain has the features predicted by the quantum chaos theory.

作者简介

V. Syshchenko

Belgorod State University

编辑信件的主要联系方式.
Email: syshch@yandex.ru
俄罗斯联邦, Belgorod, 308015

A. Tarnovsky

Belgorod State University

Email: syshch@yandex.ru
俄罗斯联邦, Belgorod, 308015

A. Parakhin

Belgorod State University

Email: syshch@yandex.ru
俄罗斯联邦, Belgorod, 308015

A. Isupov

Laboratory of High Energy Physics, Joint Institute for Nuclear Research

Email: syshch@yandex.ru
俄罗斯联邦, Dubna, 141980

参考

  1. Ахиезер А.И., Шульга Н.Ф. Электродинамика высоких энергий в веществе. М.: Наука, 1993. 344 с.
  2. Ахиезер А.И., Шульга Н.Ф., Трутень В.И., Гриненко А.А., Сыщенко В.В. // УФН. 1995. Т. 165. № 10. С. 1165. https://doi.org/10.3367/UFNr.0165.199510c.1165
  3. Gemmel D.S. // Rev. Mod. Phys. 1974. V. 46. P. 129. https://doi.org/10.1103/RevModPhys.46.129
  4. Uggerhøj U.I. // Rev. Mod. Phys. 2005. V. 77. P. 1131. https://doi.org/10.1103/RevModPhys.77.1131
  5. Lindhard J. // Kongel. Dan. Vidensk. Selsk., Mat.-Fys. Medd. 1965. V. 34 (14). P. 1.
  6. Шульга Н.Ф., Сыщенко В.В., Тарновский А.И., Исупов А.Ю. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2015. № 7. С. 72. https://doi.org/10.7868/S0207352815070197
  7. Shul’ga N.F., Syshchenko V.V., Tarnovsky A.I., Isupov A.Yu. // Nucl. Instrum. Methods Phys. Res. B. 2016. V. 370. P. 1. https://doi.org/10.1016/j.nimb.2015.12.040
  8. Shul’ga N.F., Syshchenko V.V., Tarnovsky A.I., Isupov A.Yu. // J. Phys.: Conf. Ser. 2016. V. 732. P. 012028. https://doi.org/10.1088/1742-6596/732/1/012028
  9. Шульга Н.Ф., Сыщенко В.В., Тарновский А.И., Исупов А.Ю. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2016. № 4. С. 103. https://doi.org/10.7868/S0207352816040168
  10. Сыщенко В.В., Тарновский А.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 7. С. 84. https://doi.org/10.31857/S1028096021070207
  11. Сыщенко В.В., Тарновский А.И., Исупов А.Ю., Соловьев И.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 3. С. 103. https://doi.org/10.31857/S1028096020030188
  12. Shul’ga N.F., Syshchenko V.V., Tarnovsky A.I., Dronik V.I., Isupov A.Yu. // J. Instrum. 2019. V. 14. P. C12022. https://doi.org/10.1088/1748-0221/14/12/C12022
  13. Сыщенко В.В., Тарновский А.И., Дроник В.И, Исупов А.Ю. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 3. С. 79. https://doi.org/10.31857/S1028096022030207
  14. Сыщенко В.В., Тарновский А.И., Дроник В.И, Исупов А.Ю. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 6. С. 88. https://doi.org/10.31857/S1028096023060158
  15. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 3. Квантовая механика. Нерелятивистская теория. М.: Физматлит, 2016. 800 с.
  16. Gutzwiller M.C. Chaos in Classical and Quantum Mechanics. Springer, 1990. https://doi.org/10.1007/978-1-4612-0983-6
  17. Штокман Х.-Ю. Квантовый хаос. М.: Физматлит, 2004. 376 с.
  18. Райхл Л.Е. Переход к хаосу в консервативных классических и квантовых системах. М.–Ижевск: РХД, 2008. 756 с.
  19. Bolotin Y., Tur A., Yanovsky V. Chaos: Concepts, Control and Constructive Use. Springer International Publishing Switzerland, 2017. 281 p. https://doi.org/10.1007/978-3-319-42496-5
  20. Hénon M., Heiles C. // Astronom. J. 1964. V. 69. P. 73. https://doi.org/10.1086/109234
  21. Davis M.J., Heller E.J. // J. Chem. Phys. 1981. V. 75. P. 246. https://doi.org/10.1063/1.441832
  22. Syshchenko V.V., Tarnovsky A.I., Parakhin A.S., Isupov A.Yu. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2024. V. 18. № 2. P. 274. https://doi.org/ 10.1134/S1027451024020186
  23. Feit M.D., Fleck J.A., Jr., Steiger A. // J. Comput. Phys. 1982. V. 47. P. 412. https://doi.org/10.1016/0021-9991(82)90091-2
  24. Шульга Н.Ф., Сыщенко В.В., Нерябова В.С. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2013. № 3. С. 91. https://doi.org/10.1134/S1027451013020183
  25. Shul’ga N.F., Syshchenko V.V., Neryabova V.S. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 309. P. 153. https://doi.org/10.1016/j.nimb.2013.01.022
  26. Галицкий В.М., Карнаков Б.М., Коган В.И. Задачи по квантовой механике. М.: Наука, 1981. 648 с.
  27. Шапиро Д.А. Представления групп и их применения в физике. Новосибирск: НГУ, 2005. 142 с.
  28. Исупов А.Ю., Сыщенко В.В., Парахин А.С. // Прикладная математика & физика. 2023. Т. 55. № 1. С. 49. https://doi.org/ 10.52575/2687-0959-2023-55-1-49-56
  29. Исупов А.Ю., Сыщенко В.В., Тарновский А.И., Парахин А.С. // Прикладная математика & физика. 2024. Т. 56, № 4. С. 320. https://doi.org/10.52575/2687-0959-2024-56-4-320-327

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025