Моделирование многослойных систем с перестраиваемыми оптическими характеристиками
- Авторы: Толкач Н.М.1,2, Вишняков Н.В.2, Литвинов В.Г.2, Шерченков А.А.1, Трусов Е.П.2, Глухенькая В.Б.1, Пепеляев Д.В.1
-
Учреждения:
- Национальный исследовательский университет “МИЭТ”
- Рязанский государственный радиотехнический университет им. В.Ф. Уткина
- Выпуск: № 11 (2023)
- Страницы: 44-52
- Раздел: Статьи
- URL: https://archivog.com/1028-0960/article/view/664717
- DOI: https://doi.org/10.31857/S1028096023110201
- EDN: https://elibrary.ru/FQWJZK
- ID: 664717
Цитировать
Аннотация
Материалы с фазовым переходом МФП, в частности халькогенидные стеклообразные полупроводники и соединения из системы Ge–Sb–Te представляют интерес для применения в оптических технологиях обработки информации. Уникальность этих материалов состоит в том, что они обладают низкоэнергетичным, быстрым и обратимым фазовым переходом, приводящим к значительному изменению показателя преломления в инфракрасной области оптического спектра. Модельные расчеты, проведенные в настоящей работе, позволили исследовать трансформацию оптических свойств в многослойных системах, состоящих из слоев SiO2, Si, Si3N4 и активного слоя из МФП материала с фазовым переходом при изменении его фазового состояния. Целью этих исследований ставилось выполнение условия наименьших оптических потерь при пропускании и отражении излучения 1550 нм в таких системах в случае аморфного и кристаллического состояния активного слоя соответственно. В результате была спроектирована наиболее удовлетворяющая указанным условиям девятислойная система “SiO2//111 нм Si/277 нм SiO2/111 нм Si/251 нм SiO2/10 нм Ge2Sb2Se4Te/241 нм SiO2/110 нм Si/276 нм SiO2/112 нм Si//SiO2”.
Об авторах
Н. М. Толкач
Национальный исследовательский университет “МИЭТ”; Рязанский государственный радиотехнический университет им. В.Ф. Уткина
Автор, ответственный за переписку.
Email: n.m.tolkach@gmail.com
Россия, 124498, Зеленоград; Россия, 390005, Рязань
Н. В. Вишняков
Рязанский государственный радиотехнический университет им. В.Ф. Уткина
Автор, ответственный за переписку.
Email: rcpm-rgrtu@yandex.ru
Россия, 390005, Рязань
В. Г. Литвинов
Рязанский государственный радиотехнический университет им. В.Ф. Уткина
Email: rcpm-rgrtu@yandex.ru
Россия, 390005, Рязань
А. А. Шерченков
Национальный исследовательский университет “МИЭТ”
Email: rcpm-rgrtu@yandex.ru
Россия, 124498, Зеленоград
Е. П. Трусов
Рязанский государственный радиотехнический университет им. В.Ф. Уткина
Email: rcpm-rgrtu@yandex.ru
Россия, 390005, Рязань
В. Б. Глухенькая
Национальный исследовательский университет “МИЭТ”
Email: rcpm-rgrtu@yandex.ru
Россия, 124498, Зеленоград
Д. В. Пепеляев
Национальный исследовательский университет “МИЭТ”
Email: rcpm-rgrtu@yandex.ru
Россия, 124498, Зеленоград
Список литературы
- Sharma K., Sehgal V.K. // J. Supercomput. 2020. V. 76. P. 9901. https://www.doi.org/10.1007/s11227-020-03220-2
- Bogaerts W., Perez D., Capmany J., Miller D.A.B., Poon J., Englund D., Morichetti F., Melloni A. // Nature. 2020. V. 586. P. 207. https://www.doi.org/10.1038/s41586-020-2764-0
- Qi H., Wang X., Hu X., Du Z., Yang J., Yu Z., Ding S., Chu S., Gong Q. // J. Appl. Phys. 2021. V. 129. P. 210 906. https://www.doi.org/10.1063/5.0048878
- Kozyukhin S.A., Lazarenko P.I., Popov A.I., Eremenko I.L. // Rus. Chem. Rev. 2022. V. 91. № 9. P. RCR5033. https://www.doi.org/10.1070/RCR5033
- Lazarenko P., Kovalyuk V., An P., Kozyukhin S., Takáts V., Golikov A., Glukhenkaya V., Vorobyov Y., Kulevoy T., Prokhodtsov A., Sherchenkov A., Goltsman G. // Acta Materialia. 2022. V. 234. P. 117994. https://www.doi.org/10.1016/j.actamat.2022.117994
- Kozyukhin S.A., Lazarenko P.I., Vorobyov Y.V., Savelyev M.S., Polokhin A.A., Glukhenkaya V.B., Sherchenkov A.A., Gerasimenko A.Y. // Matériaux & Techniques. 2018. V. 180070. № 3. P. 1. https://www.doi.org/10.1051/mattech/2019008
- Fuxi G., Yang W. // Data Storage at the Nanoscale: Advances and Applications. Taylor & Francis Group. 2015. P. 190. https://www.doi.org/10.1201/b18094
- Zhang Y., Ríos C., Shalaginov M.Y., Li M., Majumdar A., Gu T., Hu J. // Appl. Phys. Lett. 2021. V. 118. P. 210 501. https://www.doi.org/10.1063/5.0054114
- Meng Y., Cao T., Long Y. // J. Appl. Phys. 2020. V. 128. P. 140904. https://www.doi.org/10.1063/5.0023925
- Hosokawa S., Pilgrim W.-C., Höhle A., Szubrin D., Boudet N., Bérar J.-F., Maruyama K. // J. Appl. Phys. 2012. V. 111. P. 83 517. https://www.doi.org/10.1063/1.3703570
- Tolkach N.M., Vishnyakov N.V., Lazarenko P.I., Sherchencov A.A., Sudakova A.U., Nazimov D.R. // J. Phys. Conf. Ser. 2020. V. 1695. P. 012 075. https://www.doi.org/10.1088/1742-6596/1695/1/012075
- Wen S., Meng Y., Jiang M., Wang Y. // Sci. Rep. 2018. V. 8. P. 4979. https://www.doi.org/10.1038/s41598-018-23360-z
- Ríos C., Stegmaier M., Hosseini P., Wang D., Scherer T., Wright C.D., Bhaskaran H., Pernice W.H.P. // Nat. Photonics. 2015. V. 9. P. 725. https://www.doi.org/10.1038/nphoton.2015.182
- Rude M., Pello J., Simpson R.E., Osmond J., Roelkens G., van der Tol J.J., Pruneri V. // Appl. Phys. Lett. 2013. V. 103. № 14. P. 141119. https://www.doi.org/10.1063/1.4824714
- Ford W. // Numerical Linear Algebra with Applications: Using MATLAB. Academic Press, 2015. 629 p. https://doi.org/10.1016/C2011-0-07533-6
- Born M., Wolf E., Bhatia A.B., Clemmow P.C., Gabor D., Stokes A.R., Taylor A.M., Wayman P.A., Wilcock W.L. // Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th ed. Cambridge University Press, 1999. 952 p. https://www.doi.org/10.1017/CBO9781139644181
- Park J.W., Eom S.H., Lee H., Da Silva J.L.F., Kang Y.S., Lee T.Y., Khang Y.H. // Phys. Rev. B. 2009. V. 80. P. 115 209. https://www.doi.org/10.1103/PhysRevB.80.115209
- Zhang Y., Chou J.B., Li J., Li H., Du Q., Yadav A., Zhou S., Shalaginov M.Y., Fang Z., Zhong H., Roberts C., Robinson P., Bohlin B., Ríos C., Lin H., Kang M., Gu T., Warner J., Liberman V., Richardson K., Hu Ju. // Nature Commun. 2019. V. 10 № 1. P. 4279. https://www.doi.org/10.1038/s41467-019-12196-4
- Michel A.K.U., Wuttig M., Taubner T. // Adv. Opt. Mater. 2017. V. 5. Iss. 18. https://www.doi.org/10.1002/adom.201700261
- Yang F., Tang X., Chen T., Wang M., Zhang L., Han J., Wan L., Ke D., Dai Y. // Comput. Mater. Sci. 2019. V. 168. P. 253. https://www.doi.org/10.1016/j.commatsci.2019.05.019
- Lazarenko P., Phuc N., Kozyukhin S., Sherchenkov A. // J. Optoelectron. Adv. Mater. 2011. V. 13. № 11. P. 1400
- Raeis-Hosseini N., Rho J. // Mater. 2017. V. 10. Iss. 9. P. 1046. https://www.doi.org/10.3390/ma10091046
- Guo P., Burrow J.A., Sevison G.A., Sood A., Asheghi M., Hendrickson J.R., Goodson K.E., Agha I., Sarangan A. // Appl. Phys. Lett. 2018. V. 113. Iss. 17. P. 171903. https://www.doi.org/10.1063/1.5053713
- Singh P., Sharma P., Sharma V., Thakur A. // Semicond. Sci. Technol. 2017. V. 32. № 4. P. 45015. https://www.doi.org/10.1088/1361-6641/aa5ee0
Дополнительные файлы
