Peculiarities of Physical Properties of Film Structures Based on Tungsten Nanofilms with Various Phase Composition

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The electrophysical properties of magnetron sputtered W thin films were studied depending on their thicknesses, substrate materials, phase compositions and structures. The results obtained indicated that W films were polycrystalline and contained two crystalline phases. Magneto-optical isotropy of Co thin films deposited on W was also observed. Dependencies of the resistivity on the W film thickness and substrate material was investigated experimentally and theoretically, which indicated the dominant contribution of charge carrier transport processes through crystallite boundaries.

Texto integral

Acesso é fechado

Sobre autores

A. Prokaznikov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Autor responsável pela correspondência
Email: prokaznikov@mail.ru
Rússia, Yaroslavl, 150067

R. Selyukov

Yaroslavl Branch of the Valiev Institute of Physics and Technology of the RAS

Email: prokaznikov@mail.ru
Rússia, Yaroslavl, 150067

V. Paporkov

Demidov Yaroslavl State University

Email: prokaznikov@mail.ru
Rússia, Yaroslavl, 150003

Bibliografia

  1. Park Y.-K., Kim D.-Y., Kim J.-S., Nam Y.-S., Park M.-H., Choi H.-C., Min B.-C., Choe S.-B. // NPG Asia Mater. 2018. V. 10. P. 995. https://doi.org/10.1038/s41427-018-0090-x
  2. Topology in Magnetism / Ed. Zang J., Cros V., Hoffmann A. Cham: Springer, 2018. 416 p.
  3. Guimaraes A.P. Principles of Nanomagnetism. Cham: Springer, 2017. 330 p.
  4. Wang S.X., Taratorin A.M. Magnetic Information Storage Technology. London: Academic Press, 1999. 536 p.
  5. Rotenberg E., Freelon B.K., Koh H., Bostwick A., Rossnagel K., Schmid A., Kevan S.D. // New J. Phys. 2005. V. 7. P. 114. https://doi.org/10.1088/1367-2630/7/1/114
  6. Abdelhameed A.H., Angloher G., Bauer P., Bento A., Bertoldo E.,·Canonica L., Fuchs D., Hauff D., Ferreiro Iachellini N., Mancuso M.,·Petricca F., Probst F., Riesch J., Rothe J. // J. Low Temp. Phys. 2020. V. 199. P. 401. https://doi.org/10.1007/s10909-020-02357-x
  7. Lita A.E., Rosenberg D., Nam S., Miller A.J., Balzar D., Kaatz L.M., Schwall R.E. // IEEE Trans. Appl. Supercond. 2005. V. 15. № 2. P. 3528. https://doi.org/10.1109/TASC.2005.849033
  8. Mauskopf P.D. // Publ. Astron. Soc. Pac. 2018. V. 130. № 990. Р. 082001. https://doi.org/10.1088/1538-3873/aabaf0
  9. Abrue H., Anders J., Antel C. et al. // Phys. Rev. Lett. 2023. V. 131. № 3. Р. 031801. https://doi.org/10.1103/PhysRevLett.131.031801
  10. Abrue H., Mansour E.A., Antel C. et al. The FASER Detector. https://arxiv.org/pdf/2207.11427.pdf
  11. Aoki S., Ariga A., Ariga T. et al. // J. High Energ. Phys. 2020. V. 2020. Р. 33. https://doi.org/10.1007/JHEP01(2020)033
  12. Kulikova D.P., Sgibnev Y.M., Yankovskii G.M. et al. // Sci. Rep. 2023. V. 13. Р. 890. https://doi.org/10.1038/s41598-023-28204-z
  13. Васьковский В.О., Волочаев М.Н., Горьковенко А.Н., Кравцов Е.А., Лепаловский В.Н., Фещенко А.А. // ФТТ. 2021. Т. 63. Вып. 7. С. 915. https://doi.org/10.21883/FTT.2021.07.51042.046
  14. Udvardi L., Szunyogh L. // Phys. Rev. Lett. 2009. V. 102. № 20. P. 207204. https://doi.org/10.1103/PhysRevLett.102.207204
  15. Zakeri Kh., Zhang Y., Prokop J., Chuang T.-H., Sakr N., Tang W. X., Kirschner J. // Phys. Rev. Lett. 2010. V. 104. № 13. P. 137203. https://doi.org/10.1103/PhysRevLett.104.137203
  16. Prokaznikov A.V., Paporkov V.A., Selyukov R.V., Vasilev S.V., Savenko O.V. // Russ. Microelectron. 2022. V. 51. № 6. P. 466. https://doi.org/10.1134/S1063739722700184
  17. Buchin E.Yu., Vaganova E.I., Naumov V.V., Paporkov V.A., Prokaznikov A.V. // Tech. Phys. Lett. 2009. V. 35. № 7. P. 589. https://doi.org/10.1134/S1063785009070025
  18. Paporkov V.A., Prokaznikov A.V. // Russ. Microelectron. 2019. V. 48. № 1. P. 43. https://doi.org/10.1134/S1063739719010086
  19. Prokaznikov A.V., Paporkov V.A. // Russ. Microelectron. 2020. V. 49. № 5. P. 358. https://doi.org/ 10.1134/S1063739720040071
  20. Mattheiss L.F. // Phys. Rev. 1965. V. 139. № 6A. P. A1893. https://doi.org/10.1103/PhysRev.139.A1893
  21. Basaviah S., Pollak S.R. // J. Appl. Phys. 1968. V. 39. № 12. P. 5548. https://doi.org/10.1063/1.1656012
  22. Morcom W.R., Worrell W.L., Sell H.G., Kaplan H.I. // Metall. Trans. 1974. V. 5. P. 155. https://doi.org/10.1007/BF02642939
  23. Lassner E., Schubert W.-D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. New York: Springer, 1999. 422 p.
  24. Li W., Fenton J.C., Wang Y., McComb D.W., Warburton P.A. // J. Appl. Phys. 2008. V. 104. № 9. P. 093913. https://doi.org/10.1063/1.3013444
  25. Vink T.J., Walrave W., Daams J.L.C., Dirks A.G., Somers M.A.J., van den Aker K.J.A. // J. Appl. Phys. 1993. V. 74. № 2. P. 988. https://doi.org/10.1063/1.354842
  26. Nix W.D., Clemens B.M. // J. Mater. Res. 1999. V. 14. № 8. P. 4367. https://doi.org/10.1557/JMR.1999.0468
  27. Гантмахер В.Ф., Левинсон И.Б. Рассеяние носителей тока в металлах и полупроводниках. М.: Наука, 1984. 350 с.
  28. Selyukov R.V., Amirov I.I., Naumov V.V. // Russ. Microelectron. 2022. V. 51. № 6. P. 488. https://doi.org/10.1134/S1063739722700081
  29. Sandomirskii V.B. // Sov. Phys. JETP. 1967. V. 25. № 1. P. 101.
  30. Fuchs K. // Math. Proc. Cambridge Philos. Soc. 1938. V. 34. № 1. P. 100. https://doi.org/10.1017/S0305004100019952
  31. Tellier C.R., Tesser A.J. Size Effect in Thin Films. Elsevier, New York. 1982. 310 p.
  32. Mayadas A.F., Shatzkes M. // Phys. Rev. 1970. V. 1. № 4. P. 1382. https://doi.org/10.1103/PhysRevB.1.1382
  33. Абрикосов А.А. Основы теории металлов. М.: Наука. 1987. 520 с.
  34. Boiko V.V., Gantmakher V.F., Gasparov V.A. // Sov. Phys. JETP. 1974. V. 38. № 3. P. 604.
  35. Desai P.D., Chu T.K., James H.M., Ho C.Y. // J. Phys. Chem. Ref. Data. 1984. V. 13. № 4. P. 1069. https://doi.org/10.1063/1.555723
  36. Lee J.-S., Cho J., You C.-Y. // J. Vac. Sci. Technol. A. 2016. V. 34. № 2. P. 021502. https://doi.org/10.1116/1.4936261
  37. Thompson J.J. // Proc. Cambridge Philos. Soc. 1901. V. 11. P. 120.
  38. Sondheimer E.H. // Phys. Rev. 1950. V. 80. № 3. P. 401. https://doi.org/10.1103/PhysRev.80.401
  39. Sondheimer E.H. // Adv. Phys. 1952. V. 1. № 1. P. 1. https://doi.org/10.1080/00018735200101151
  40. Watjen J.I., Bright T.J., Zhang Z.M., Muratore C., Voevodin A.A. // J. Heat Mass Transf. 2013. V. 61. P. 106. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.063
  41. Karabacak T., Mallikarjunan A., Singh J.P., Ye D., Wang G.-C., Lu T.-M. // Appl. Phys. Lett. 2003. V. 83. № 15. P. 3096. https://doi.org/10.1063/1.1618944
  42. Соколов А.А., Тернов И.М., Жуковский В.Ч. Квантовая механика. М.: Наука, 1979. 528 с.
  43. Воронцов Ю.И. // УФН. 1981. Т. 133. № 2. С. 351. https://doi.org/10.3367/UFNr.0133.198102f.035
  44. Shen Y. G., Mai Y. W., Zhang Q. C., McKenzie D. R., McFall W. D., McBride W. E. // J. Appl. Phys. 2000. V. 87. № 1. P. 177. https://doi.org/10.1063/1.371841
  45. Маделунг О. Теория твердого тела. М.: Наука, 1980. 416 с.
  46. Ашкрофт Н., Мермин Н. Физика твердого тела. Т. 1. М.: Наука, 1979. 458 с.
  47. Hänsel H., Neumann W. Physik, eine Darstellung der Grundlagen. VII Festkörper. Berlin: VEB Deutscher Verlag der Wissenschaften, 1978. 333 s.
  48. Fu B., Lai W., Yuan Y., Xu H., Liu W. // J. Nucl. Mater. 2012. V. 427. № 1–3. P. 268. https://doi.org/10.1016/j.jnucmat.2012.05.015
  49. Ансельм А.И. Введение в теорию полупроводников. М.: Наука, 1978. 615 с.
  50. Bawendi M.G., Brus L.E., Ekimov A.I. Quantum Dots — Seeds of Nanoscience. Kungl. VetenskapsAkademien, 2023. Specific Background to the Nobel Prize in Chemistry 2023. The Nobel Committee for Chemistry. P. 1–17.
  51. Fröhlich H. // Physica. 1937. V. 4. № 5. P. 406. https://doi.org/10.1016/S0031-8914(37)80143-3
  52. Кулагин В.В., Хомяков А.Ю., Гаспарян Ю.М. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 10. С. 102. https://doi.org/10.31857/S1028096022100090
  53. Бакаева А.М., Бакаев А.В., Терентьев Д.А., Дубинко А.В., Журкин Е.Е. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 2. С. 79. https://doi.org/10.7868/S0207352818020130

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Diffractograms of samples with 10 (a), 20 (b), 30 nm (c) thick W films deposited on glass (1), Si (2), SiO2/Si (3).

Baixar (439KB)
3. Fig. 2. Diffractograms of samples with 30 nm thick W films deposited on SiO2/Si at 573 (1) and 773 K (2). Measurement speed of 1 (a) and 0.125 deg/min (b).

Baixar (288KB)
4. Fig. 3. SEM images of W films with thicknesses of 10 (a, b), 20 (c, d), 30 nm (e, f) deposited on Si (a, c, e) and on SiO2/Si (b, d, f).

Baixar (2MB)
5. Fig. 4. SEM images of a 20 nm thick W film on SiO2/Si (a) and a 30 nm thick W film on Si (b) obtained at an electron beam incidence angle of 70°.

Baixar (668KB)
6. Fig. 5. Magneto-optical equatorial Kerr effect (δ) in the Co (6 nm)/W/SiO2/Si system for different tungsten film thicknesses: a - 10; b - 20; c - 30 nm.

Baixar (223KB)
7. Fig. 6. Resistivity ρ of W films as a function of their thickness t for different substrates: 1 - SiO2/Si; 2 - Si; 3 - glass; 4, 5 - 30 nm thick film deposited on SiO2/Si at 573 and 773 K, respectively.

Baixar (66KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024