Quantum Size Effect of Bloch Wave Functions of Ultra-High Energy Electrons in a Thin Single-Crystal Film

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The reflection coefficient of ultra-high-energy electrons (~1 MeV) at their normal incidence on a thin single-crystal film is calculated. It is shown that even at such high particle energies, the quantum size effect of the Bloch waves formed in the film is noticeably manifested. Narrow Bragg reflection peaks are found to appear at certain electron energies. A formula is given that determines their position and intensity on the reflection curve. A comparison is made of reflection coefficients at medium, high and ultra-high particle energies.

Sobre autores

S. Shkornyakov

Shubnikov Institute of Crystallography of the FSRC “Crystallography and Photonics” of the RAS

Autor responsável pela correspondência
Email: shkornyakov@mail.ru
Rússia, Moscow

Bibliografia

  1. Shishido F. // Tech. Rep. ISSP. Ser. A. 1973. № 616. P. 1.
  2. Пшеничнов Е.А. // ФТТ. 1962. Т. 4. Вып. 5. С. 1113.
  3. Schnupp P. // Phys. Stat. Sol. 1967. V. 21. P. 567.
  4. Schnupp P. // Solid State Electron. 1967. V. 10. P. 785.
  5. Lopez-Cruz E., Helman J.S. //Phys. Rev. B. 1974. V. 6. № 4. P. 1751.
  6. Van Rossum M.C.W., Nieuwenhuizen Th.M. // Rev. Mod. Phys. 1999. V. 71. № 1. P. 313.
  7. Barra F., Gaspard P. // J. Phys. A. 1999. V. 32. P. 3357.
  8. Драгунов В.П., Неизвестный И.Г., Гридчин В.Ф. Основы наноэлектроники. М.: Физматкнига-Логос, 2006. 494 с.
  9. Щука А.А. Наноэлектроника. М.: Физматкнига, 2007. 463 с.
  10. Мартинес-Дуарт Дж М., Мартин-Палма Р Дж., Агулло-Руеда Ф. Нанотехнологии для микро - и оптоэлектроники. Сер. Мир материалов и технологий. М.: Техносфера, 2007. 367 с.
  11. Li J., Chen M., Samad A. et al. // Nat. Mater. 2022. V. 21. P. 740.
  12. Hoang A.T., Hu L., Katiyar A.K., Ahn J.-H. // Matter. 2022. V. 5. P. 4116.
  13. Шкорняков С.М. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 2. С. 104. https://doi.org./10.31857/S1028096022020121 (Shkornyakov S.M. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2022. V. 16. №1. P. 181. https://doi.org./10.1134/S1027451022010311
  14. Шкорняков С.М. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 8. С. 102. https://doi.org./10.31857/S1028096022080143 (Shkornyakov S.M. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2022.V.16. № 4. P. 653. https://doi.org./10.1134/S1027451022040334)
  15. Шкорняков С.М. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 6. С. 83. https://doi.org./10.7868/S020735281706018X (Shkornyakov S.M. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2017. V. 11. № 3. P. 650. https://doi.org./10.1134/S1027451017030351)
  16. Хирш П., Хови А., Николсон Р., Пэшли Д., Уэлан М. Электронная микроскопия тонких кристаллов. М.: Мир, 1968. 574 с. (Hirsch P.B., Howie A., Nicholson R.B., Pashley D.W., Whelan M.J. Electron Microscopy of Thin Crystals.London, Butterworths, 1965.)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Schematic of the potential energy of an electron in a film: V0 - average internal energy; N - number of monolayers parallel to the surface in the film; c - period of one-dimensional lattice; t - amplitude of the passed wave; r - amplitude of the reflected wave

Baixar (99KB)
3. Fig. 2. Plot of the dependence of the reflection coefficient R on the incident electron energy E in the range of about 1 MeV. Parameters: c = 5 Å, y = -2, V0 = 0, N = 300

Baixar (98KB)
4. Fig. 3. Dependence of the reflection coefficient R on the incident electron energy E in the range of about 1 MeV in the enlarged scale on the ordinate axis

Baixar (106KB)
5. Fig. 4. Dependence of the reflection coefficient R on the incident electron energy E in the range of about 1 MeV at even larger scaling up both on the x-axis and y-axis

Baixar (120KB)
6. Fig. 5. R(E) curves for three ranges of incident electron energy: a - medium; b - high; c - ultrahigh

Baixar (344KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024