Manganite Heterostructures: SrIrO3/La0.7Sr0.3MnO3 and Pt/La0.7Sr0.3MnO3 for Generation and Registration of Spin Current

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper presents the results of experimental studies of the cross section of the boundaries of the SrIrO3/La0.7Sr0.3MnO3 и Pt/La0.7Sr0.3MnO3, heterostructures, in which, upon excitation of ferromagnetic resonance in a La0.7Sr0.3MnO3 film, a spin current arises that flows through the boundary in structure. Epitaxial growth of thin films of strontium iridate SrIrO3 and manganite La0.7Sr0.3MnO3 on a (110) NdGaO3 single-crystal substrate was carried out using magnetron sputtering at high temperature in a mixture of argon and oxygen gases. The spin mixing conductance, which determines the amplitude of the spin current and generally has real Re g↑↓ and imaginary Im g↑↓ parts, was determined from the frequency dependence of the FMR spectrum of the LSMO film and heterostructures. It is shown that the Im g↑↓ quantity, can play an important role in determining the spin Hall angle (θSH) from the angular dependence of the spin magnetoresistance. For the SrIrO3/La0.7Sr0.3MnO3 heterostructures, θSH turned out to be significantly higher (almost an order of magnitude) than for the Pt/La0.7Sr0.3MnO3 heterostructure.

Texto integral

Acesso é fechado

Sobre autores

G. Ovsyannikov

Kotelnikov Institute of Radio Engineering and Electronics of the RAS

Autor responsável pela correspondência
Email: gena@hitech.cplire.ru
Rússia, Moscow

K. Constantinian

Kotelnikov Institute of Radio Engineering and Electronics of the RAS

Email: karen@hitech.cplire.ru
Rússia, Moscow

G. Ulev

Kotelnikov Institute of Radio Engineering and Electronics of the RAS; National Research University “High School of Economy”, The Faculty of Physics

Email: gena@hitech.cplire.ru
Rússia, Moscow; Moscow

A. Shadrin

Kotelnikov Institute of Radio Engineering and Electronics of the RAS; Moscow Institute of Physics and Technology (National Research University)

Email: gena@hitech.cplire.ru
Rússia, Moscow; Dolgoprudny

P. Lega

Kotelnikov Institute of Radio Engineering and Electronics of the RAS; Рeoples' Friendship University of Russia (RUDN University)

Email: gena@hitech.cplire.ru
Rússia, Moscow; Moscow

A. Orlov

Kotelnikov Institute of Radio Engineering and Electronics of the RAS

Email: gena@hitech.cplire.ru
Rússia, Moscow

Bibliografia

  1. Дьяконов М.И., Перель В.И. // Письма в ЖЭТФ. 1971. Т. 63. С. 657.
  2. Saitoh E., Ueda M., Miyajima H., Tatara S. // Appl. Phys. Lett. 2006. V. 88. P. 182509. https://www.doi.org/10.1063/1.2199473
  3. Mosendz O., Vlaminck V., Pearson J.E., Fradin F.Y., Bauer W. G.E., Bader S. D., Hoffmann A. // Phys. Rev. B. 2010. V. 82. P. 214403. https://www.doi.org/10.1103/PhysRevB.82.214403
  4. Tserkovnyak Ya., Brataas A., Bauer G.E.W. // Phys. Rev. Lett. 2002. V. 88. P. 117601. https://www.doi.org/10.1103/PhysRevLett.88.117601
  5. Sinova J., Valenzuela S.O., Wunderlich J., Back C.H., Jungwirth T. // Rev. Mod. Phys. 2015. V. 87. P. 1213. https://www.doi.org/10.1103/RevModPhys.87.1213
  6. Chen Y.-T., Takahashi S., Nakayama H., Althammer M., Goennenwein S.T.B., Saitohand E., Bauer G.E.W. // J. Phys. D: Condens. Matter. 2016. V. 28. P. 103004. https://www.doi.org/10.1088/0953-8984/28/10/103004
  7. Kim J., Sheng P., Takahashi S., Mitani S., Hayashi M. // Phys. Rev. Lett. 2016. V. 116. P. 097201. https://www.doi.org/10.1103/PhysRevLett.116.097201
  8. Althammer M., Meyer S., Nakayama H., Schreier M., Altmannshofer S., Weiler M., Huebl H., Geprägs S., Opel M., Gross R., Meier D., Klewe C., Kuschel T., Schmalhorst J.-M., Reiss G., Shen L., Gupta A., Chen Y.-T., Bauer G.E.W., Saitoh E., Goennenwein S.T.B. // Phys. Rev. B. 2013. V. 87. P. 224401. https://www.doi.org/10.1103/PhysRevB.87.224401
  9. Kimura T., Otani Y., Sato T., Takahashi S., Maekawa S. // Phys. Rev. Lett. 2007. V. 98. P. 156601. https://www.doi.org/10.1103/PhysRevLett.98.156601
  10. Ovsyannikov G.A., Shaikhulov T.A., Stankevich K.L., Khaydukov Yu., Andreev N.V. // Phys. Rev. B. 2020. V. 102. P. 144401. https://www.doi.org/10.1103/PhysRevB.102.144401
  11. Shaikhulov T.A., Demidov V.V., Stankevich K.L., Ovsyannikov G.A. // J. Phys.: Conf. Series. 2019. V. 1389. P. 012079. https://www.doi.org/10.1088/1742-6596/1389/1/012079.
  12. Ovsyannikov G.A., Constantinian K.Y., Stankevich K.L., Shaikhulov T.A., Klimov A.A. // J. Phys. D: Appl. Phys. 2021. V. 54. P. 365002. https://www.doi.org/10.1088/1361-6463/ac07e1
  13. Zwierzycki M., Tserkovnyak Y., Kelly P.J., Brataas A., Bauer G.E.W. // Phys. Rev. B. 2005. V. 71. P. 064420. https://www.doi.org/10.1103/PhysRevB.71.064420
  14. Yang F., Hammel P.C. // J. Phys. D: Appl. Phys. 2018. V. 51. P. 2530013. https://www.doi.org/10.1088/1361-6463/aac249
  15. Nan T., Emori S., Boone C.T., Wang X., Oxholm T.M., Jones J.G., Howe B.M., Brown G.J., Sun N.X. // Phys. Rev. B. 2015. V. 91. P. 214416. https://www.doi.org/10.1103/PhysRevB.91.214416
  16. Шайхулов Т.А., Овсянников Г.А. // Физика твердого тела. 2018. Т. 60. Вып. 11. С. 2190. https://www.doi.org/10.21883/FTT.2018.11.46662. 22NN
  17. Crossley S., Swartz A.G., Nishi K.O., Hikita Y., Hwang H.Y. // Phys. Rev. B. 2019. V. 100. P. 115163. https://www.doi.org/10.1103/PhysRevB.100.115163
  18. Huang X., Sayed S., Mittelstaedt J., Susarla S., Karimeddiny S., Caretta L., Zhang H., Stoica V.A., Gosavi T., Mahfouzi F., Sun Q., Ercius P., Kioussis N., Salahuddin S., Ralph D.C., Ramesh R. // Adv. Mater. 2021. P. 2008269. https://www.doi.org/10.1002/adma.202008269
  19. Dubowik J., Graczyk P., Krysztofik A., Głowinski H., Coy E., Załeski K., Goscianska I. // Phys. Rev. Appl. 2020. V. 13. P. 054011. https://www.doi.org/10.1103/PhysRevApplied.13. 054011
  20. Овсянников Г.А., Константинян К.И, Калачев Е.А., Климов А.А. // Письма в ЖТФ. 2022. Т. 48. № 12. С. 44. https://www.doi.org/10.21883/PJTF.2022.12.52679. 19187
  21. Gomez-Perez J.M., Zhang X.-P., Calavalle F., Ilyn M., González-Orellana C., Gobbi M., Rogero C., Chuvilin A., Golovach V.N., Hueso L.E., Bergeret F.S., Casanova F. // Nano Lett. 2020. V. 20. P. 6815. https://www.doi.org/10.1021/acs.nanolett.0c02834
  22. Rosenberger P., Opel M., Geprägs S., Hueb H., Gross R., Müller M., Althammer M. // Appl. Phys. Lett. 2021. V. 118. P. 192401. https://www.doi.org/10.1063/5.0049235
  23. Yi D., Liu J., Hsu S.L., Zhang L., Choi Y., Kim J.W., Chen Z., Clarkson J.D., Serrao C.R., Arenholz E., Ryan P.J., Xu H., Birgeneau R.J., Ramesh R. // Proc. Nat. Acad. Sci. USA. 2016. V. 113. P. 6397. https://www.doi.org/10.1073/pnas.1524689113
  24. Nan T., Anderson T.J., Gibbons J., Hwang K., Campbell N., Zhou H., Dong Y.Q., Kim G.Y., Shao D.F., Paudel T.R., Reynolds N., Wang X.J., Sun N.X., Tsymbal E.Y., Choi S.Y., Rzchowski M.S., Kim Y.B., Ralph D.C., Eom C.B. // Proc. Nat. Acad. Sci. USA. 2019. V. 116. P. 16186. https://www.doi.org/10.1073/pnas.1812822116
  25. Everhardt A.S., Dc M., Huang X., Sayed S., Gosavi T.A., Tang Y., Lin C.-C., Manipatruni S., Young I.A., Datta S., Wang J.-P., Ramesh R. // Phys. Rev. Material. 2019. V. 3. Iss. 5. P. 051201. https://www.doi.org/10.1103/PhysRevMaterials. 3.051201

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. X-ray diffractogram from the SrIrO3/La0.7Sr0.3MnO3 heterostructure. The reflection indices from SrIrO3 (SIO), La0.7Sr0.3MnO3 (LSMO) and NdGaO3 substrate (NGO) are shown

Baixar (195KB)
3. Fig. 2. a - Cross section of SrIrO3/La0.7Sr0.3MnO3 heterostructure on NdGaO3 substrate obtained by transmission electron microscope. PtT - technological film of platinum deposited on the heterostructure by active chemical atomization. b - Section in enlarged scale. c - Layer-by-layer elemental composition of the heterostructure

Baixar (858KB)
4. Fig. 3. a - Cross section of Pt/La0.7Sr0.3MnO3 heterostructure on NdGaO3 substrate, obtained on a transmission electron microscope. PtT - technological platinum film, b - layer-by-layer elemental composition of the heterostructure

Baixar (590KB)
5. Fig. 4. Schematic representation of a sample with SrIrO3/La0.7Sr0.3MnO3 heterostructure grown on a (110)NdGaO3 substrate with Pt contact pads. The leads for voltage removal are labeled as V1 and V2 - for measuring both longitudinal Rx and Ry transverse spin magnetoresistance

Baixar (521KB)
6. Fig. 5. Angle dependences of normalized magnetoresistance values of a) SrIrO3/La0.7Sr0.3MnO3 and b) Pt/La0.7Sr0.3MnO3 heterostructure taken in the H = 100 Å field at T = 300 K. Experiment - square symbols, approximation - solid line. Longitudinal Rx and transverse Ry magnetoresistance are shown

Baixar (665KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024