Manganite Heterostructures: SrIrO3/La0.7Sr0.3MnO3 and Pt/La0.7Sr0.3MnO3 for Generation and Registration of Spin Current
- Авторлар: Ovsyannikov G.A.1, Constantinian K.I.1, Ulev G.D.1,2, Shadrin A.V.1,3, Lega P.V.1,4, Orlov A.P.1
-
Мекемелер:
- Kotelnikov Institute of Radio Engineering and Electronics of the RAS
- National Research University “High School of Economy”, The Faculty of Physics
- Moscow Institute of Physics and Technology (National Research University)
- Рeoples' Friendship University of Russia (RUDN University)
- Шығарылым: № 2 (2024)
- Беттер: 81-88
- Бөлім: Articles
- URL: https://archivog.com/1028-0960/article/view/664782
- DOI: https://doi.org/10.31857/S1028096024020127
- EDN: https://elibrary.ru/AWWJRK
- ID: 664782
Дәйексөз келтіру
Аннотация
This paper presents the results of experimental studies of the cross section of the boundaries of the SrIrO3/La0.7Sr0.3MnO3 и Pt/La0.7Sr0.3MnO3, heterostructures, in which, upon excitation of ferromagnetic resonance in a La0.7Sr0.3MnO3 film, a spin current arises that flows through the boundary in structure. Epitaxial growth of thin films of strontium iridate SrIrO3 and manganite La0.7Sr0.3MnO3 on a (110) NdGaO3 single-crystal substrate was carried out using magnetron sputtering at high temperature in a mixture of argon and oxygen gases. The spin mixing conductance, which determines the amplitude of the spin current and generally has real Re g↑↓ and imaginary Im g↑↓ parts, was determined from the frequency dependence of the FMR spectrum of the LSMO film and heterostructures. It is shown that the Im g↑↓ quantity, can play an important role in determining the spin Hall angle (θSH) from the angular dependence of the spin magnetoresistance. For the SrIrO3/La0.7Sr0.3MnO3 heterostructures, θSH turned out to be significantly higher (almost an order of magnitude) than for the Pt/La0.7Sr0.3MnO3 heterostructure.
Толық мәтін

Авторлар туралы
G. Ovsyannikov
Kotelnikov Institute of Radio Engineering and Electronics of the RAS
Хат алмасуға жауапты Автор.
Email: gena@hitech.cplire.ru
Ресей, Moscow
K. Constantinian
Kotelnikov Institute of Radio Engineering and Electronics of the RAS
Email: karen@hitech.cplire.ru
Ресей, Moscow
G. Ulev
Kotelnikov Institute of Radio Engineering and Electronics of the RAS; National Research University “High School of Economy”, The Faculty of Physics
Email: gena@hitech.cplire.ru
Ресей, Moscow; Moscow
A. Shadrin
Kotelnikov Institute of Radio Engineering and Electronics of the RAS; Moscow Institute of Physics and Technology (National Research University)
Email: gena@hitech.cplire.ru
Ресей, Moscow; Dolgoprudny
P. Lega
Kotelnikov Institute of Radio Engineering and Electronics of the RAS; Рeoples' Friendship University of Russia (RUDN University)
Email: gena@hitech.cplire.ru
Ресей, Moscow; Moscow
A. Orlov
Kotelnikov Institute of Radio Engineering and Electronics of the RAS
Email: gena@hitech.cplire.ru
Ресей, Moscow
Әдебиет тізімі
- Дьяконов М.И., Перель В.И. // Письма в ЖЭТФ. 1971. Т. 63. С. 657.
- Saitoh E., Ueda M., Miyajima H., Tatara S. // Appl. Phys. Lett. 2006. V. 88. P. 182509. https://www.doi.org/10.1063/1.2199473
- Mosendz O., Vlaminck V., Pearson J.E., Fradin F.Y., Bauer W. G.E., Bader S. D., Hoffmann A. // Phys. Rev. B. 2010. V. 82. P. 214403. https://www.doi.org/10.1103/PhysRevB.82.214403
- Tserkovnyak Ya., Brataas A., Bauer G.E.W. // Phys. Rev. Lett. 2002. V. 88. P. 117601. https://www.doi.org/10.1103/PhysRevLett.88.117601
- Sinova J., Valenzuela S.O., Wunderlich J., Back C.H., Jungwirth T. // Rev. Mod. Phys. 2015. V. 87. P. 1213. https://www.doi.org/10.1103/RevModPhys.87.1213
- Chen Y.-T., Takahashi S., Nakayama H., Althammer M., Goennenwein S.T.B., Saitohand E., Bauer G.E.W. // J. Phys. D: Condens. Matter. 2016. V. 28. P. 103004. https://www.doi.org/10.1088/0953-8984/28/10/103004
- Kim J., Sheng P., Takahashi S., Mitani S., Hayashi M. // Phys. Rev. Lett. 2016. V. 116. P. 097201. https://www.doi.org/10.1103/PhysRevLett.116.097201
- Althammer M., Meyer S., Nakayama H., Schreier M., Altmannshofer S., Weiler M., Huebl H., Geprägs S., Opel M., Gross R., Meier D., Klewe C., Kuschel T., Schmalhorst J.-M., Reiss G., Shen L., Gupta A., Chen Y.-T., Bauer G.E.W., Saitoh E., Goennenwein S.T.B. // Phys. Rev. B. 2013. V. 87. P. 224401. https://www.doi.org/10.1103/PhysRevB.87.224401
- Kimura T., Otani Y., Sato T., Takahashi S., Maekawa S. // Phys. Rev. Lett. 2007. V. 98. P. 156601. https://www.doi.org/10.1103/PhysRevLett.98.156601
- Ovsyannikov G.A., Shaikhulov T.A., Stankevich K.L., Khaydukov Yu., Andreev N.V. // Phys. Rev. B. 2020. V. 102. P. 144401. https://www.doi.org/10.1103/PhysRevB.102.144401
- Shaikhulov T.A., Demidov V.V., Stankevich K.L., Ovsyannikov G.A. // J. Phys.: Conf. Series. 2019. V. 1389. P. 012079. https://www.doi.org/10.1088/1742-6596/1389/1/012079.
- Ovsyannikov G.A., Constantinian K.Y., Stankevich K.L., Shaikhulov T.A., Klimov A.A. // J. Phys. D: Appl. Phys. 2021. V. 54. P. 365002. https://www.doi.org/10.1088/1361-6463/ac07e1
- Zwierzycki M., Tserkovnyak Y., Kelly P.J., Brataas A., Bauer G.E.W. // Phys. Rev. B. 2005. V. 71. P. 064420. https://www.doi.org/10.1103/PhysRevB.71.064420
- Yang F., Hammel P.C. // J. Phys. D: Appl. Phys. 2018. V. 51. P. 2530013. https://www.doi.org/10.1088/1361-6463/aac249
- Nan T., Emori S., Boone C.T., Wang X., Oxholm T.M., Jones J.G., Howe B.M., Brown G.J., Sun N.X. // Phys. Rev. B. 2015. V. 91. P. 214416. https://www.doi.org/10.1103/PhysRevB.91.214416
- Шайхулов Т.А., Овсянников Г.А. // Физика твердого тела. 2018. Т. 60. Вып. 11. С. 2190. https://www.doi.org/10.21883/FTT.2018.11.46662. 22NN
- Crossley S., Swartz A.G., Nishi K.O., Hikita Y., Hwang H.Y. // Phys. Rev. B. 2019. V. 100. P. 115163. https://www.doi.org/10.1103/PhysRevB.100.115163
- Huang X., Sayed S., Mittelstaedt J., Susarla S., Karimeddiny S., Caretta L., Zhang H., Stoica V.A., Gosavi T., Mahfouzi F., Sun Q., Ercius P., Kioussis N., Salahuddin S., Ralph D.C., Ramesh R. // Adv. Mater. 2021. P. 2008269. https://www.doi.org/10.1002/adma.202008269
- Dubowik J., Graczyk P., Krysztofik A., Głowinski H., Coy E., Załeski K., Goscianska I. // Phys. Rev. Appl. 2020. V. 13. P. 054011. https://www.doi.org/10.1103/PhysRevApplied.13. 054011
- Овсянников Г.А., Константинян К.И, Калачев Е.А., Климов А.А. // Письма в ЖТФ. 2022. Т. 48. № 12. С. 44. https://www.doi.org/10.21883/PJTF.2022.12.52679. 19187
- Gomez-Perez J.M., Zhang X.-P., Calavalle F., Ilyn M., González-Orellana C., Gobbi M., Rogero C., Chuvilin A., Golovach V.N., Hueso L.E., Bergeret F.S., Casanova F. // Nano Lett. 2020. V. 20. P. 6815. https://www.doi.org/10.1021/acs.nanolett.0c02834
- Rosenberger P., Opel M., Geprägs S., Hueb H., Gross R., Müller M., Althammer M. // Appl. Phys. Lett. 2021. V. 118. P. 192401. https://www.doi.org/10.1063/5.0049235
- Yi D., Liu J., Hsu S.L., Zhang L., Choi Y., Kim J.W., Chen Z., Clarkson J.D., Serrao C.R., Arenholz E., Ryan P.J., Xu H., Birgeneau R.J., Ramesh R. // Proc. Nat. Acad. Sci. USA. 2016. V. 113. P. 6397. https://www.doi.org/10.1073/pnas.1524689113
- Nan T., Anderson T.J., Gibbons J., Hwang K., Campbell N., Zhou H., Dong Y.Q., Kim G.Y., Shao D.F., Paudel T.R., Reynolds N., Wang X.J., Sun N.X., Tsymbal E.Y., Choi S.Y., Rzchowski M.S., Kim Y.B., Ralph D.C., Eom C.B. // Proc. Nat. Acad. Sci. USA. 2019. V. 116. P. 16186. https://www.doi.org/10.1073/pnas.1812822116
- Everhardt A.S., Dc M., Huang X., Sayed S., Gosavi T.A., Tang Y., Lin C.-C., Manipatruni S., Young I.A., Datta S., Wang J.-P., Ramesh R. // Phys. Rev. Material. 2019. V. 3. Iss. 5. P. 051201. https://www.doi.org/10.1103/PhysRevMaterials. 3.051201
Қосымша файлдар
