Investigation of Factors Determining the Efficiency of Interaction of Aluminum Alloys Activated with the Ga–In Eutectic with Water in Hydrogen Cartridges
- Autores: Nizovskii A.I.1, Shmakov A.N.1,2, Kulikov A.V.1, Suprun E.A.1, Bukhtiyarov V.I.1
-
Afiliações:
- Boreskov Institute of Catalysis SB RAS
- SRF “SKIF”, Boreskov Institute of Catalysis SB RAS
- Edição: Nº 11 (2023)
- Páginas: 9-15
- Seção: Articles
- URL: https://archivog.com/1028-0960/article/view/664713
- DOI: https://doi.org/10.31857/S102809602311016X
- EDN: https://elibrary.ru/WMSITE
- ID: 664713
Citar
Resumo
Using high-resolution X-ray diffraction and synchrotron radiation, as well as and scanning electron microscopy, it has been shown that the observed high reactivity of commercial aluminum alloys activated with the Ga–In eutectic is associated with the formation of the Al–Ga–In eutectic along grain boundaries in the entire material volume. The loss of material activity during storage under atmospheric conditions is due to the oxidation of the eutectic components. Activation with pure gallium leads to formation of AlGax solid solution, which has low activity in the reaction with water under neutral pH.
Sobre autores
A. Nizovskii
Boreskov Institute of Catalysis SB RAS
Autor responsável pela correspondência
Email: niz@catalysis.ru
Russia, 630090, Novosibirsk
A. Shmakov
Boreskov Institute of Catalysis SB RAS; SRF “SKIF”, Boreskov Institute of Catalysis SB RAS
Email: niz@catalysis.ru
Russia, 630090, Novosibirsk; Russia, 630559, Kolcovo, Novosibirsk
A. Kulikov
Boreskov Institute of Catalysis SB RAS
Email: niz@catalysis.ru
Russia, 630090, Novosibirsk
E. Suprun
Boreskov Institute of Catalysis SB RAS
Email: niz@catalysis.ru
Russia, 630090, Novosibirsk
V. Bukhtiyarov
Boreskov Institute of Catalysis SB RAS
Email: niz@catalysis.ru
Russia, 630090, Novosibirsk
Bibliografia
- Deng Z.-Y., Ferreira J.M.F., Sakka Y. // J. Am. Ceram. Soc. 2008. V. 91. Iss. 12. P. 3825. https://doi.org/10.1111/j.1551-2916.2008.02800.x
- Wang H.Z., Leung D.Y.C., Leung M.K.H., Ni M. // Renewable Sustainable Energy Rev. 2009. V. 13. Iss. 4. P. 845. https://doi.org/10.1016/j.rser.2008.02.009
- Sheindlin A.E., Zhuk A.Z. // Herald Russ. Academy Sci. 2010. V. 80. Iss. 2. P. 143. https://doi.org/10.1134/S101933161002005X
- Sheindlin A.E., Zhuk A.Z. // Russ. J. General Chem. 2007. V. 77. P. 778. https://doi.org/10.1134/S107036320704038X
- Shuo X.U., Jing L.I.U. // Front. Energy. 2019. V. 13. P. 27. https://doi.org/10.1007/s11708-018-0603-x
- Belitskus D. // J. Electrochem. Soc. 1970. V. 117. Iss. 8. P. 1097. https://doi.org/10.1149/1.2407730
- Kravchenko O.V., Semenenko K.N., Bulychev B.M., Kalmykov K.B. // J. Alloys Compd. 2005. V. 397. Iss. 1–2. P. 58. https://doi.org/10.1016/j.jallcom.2004.11.065
- Parmuzina A.V., Kravchenko O.V. // Int. J. Hydrogen Energy. 2008. V. 33. Iss. 12. P. 3073. https://doi.org/10.1016/j.ijhydene.2008.02.025
- Du Preez S.P., Bessarabov D.G. // Int. J. Electrochem. Sci. 2017. V. 12. Iss. 9. P. 8663. https://doi.org/10.20964/2017.09.22
- Du B.D., Wang W., Chen W., Chen D.M., Yang K. // Int. J. Hydrogen Energy. 2017. V. 42. Iss. 34. P. 21586. https://doi.org/10.1016/j.ijhydene.2017.07.105
- Liang J., Gao L.J., Miao N.N., Chai Y.J., Wang N., Song X.Q. // Energy. 2016. V. 113. P. 282. https://doi.org/10.1016/j.energy.2016.07.013
- Liu Y., Liu X., Chen X., Yang S., Wang C. // Int. J. Hydrogen Energy. 2017. V. 42. Iss. 16. P. 10943. https://doi.org/10.1016/j.ijhydene.2017.02.205
- Trenikhin M.V., Bubnov A.V., Nizovskii A.I., Duplyakin V.K. // Inorg. Mater. 2006. V. 42. Iss. 3. P. 256. https://doi.org/10.1134/S0020168506030083
- Nizovskii A.I., Bukhtiyarov V.I., Veligzhanin A.A., Zubavichus Y.V., Murzin V.Y., Chernyshov A.A., Khlebnikov A.S., Senin R.A., Kazakov I.V., Vorobyov A.A. // Crystallogr. Rep. 2012. V. 57. Iss. 5. P. 693. https://doi.org/10.1134/S1063774512050112
- Nizovskii A.I., Matvienko A.A., Rogozhnikov V.N., Tokarev M.M., Bukhtiyarov V.I. // Mater. Today: Proc. 2020. V. 25. Iss. 3. P. 505. https://doi.org/10.1016/j.matpr.2020.01.045
- Wang H.Z., Leung D.Y.C., Leung M.K.H., Ni M. // Renewable Sustainable Energy Rev. 2009. V. 13. Iss. 4. P. 845. https://doi.org/10.1016/j.rser.2008.02.009
- Wang W., Chen W., Zhao X.M., Chen D.M., Yang K. // Int. J. Hydrogen Energy. 2012. V. 37. Iss. 24. P. 18672. https://doi.org/10.1016/j.ijhydene.2012.09.164
- Liang J., Gao L.J., Miao N.N., Chai Y.J., Wang N., Song X.Q. // Energy. 2016. V. 113. P. 282. https://doi.org/10.1016/j.energy.2016.07.013
- Elitzur S., Rosenband V., Gany A. // Int. J. Hydrogen Energy. 2014. V. 39. Iss.12. P. 6328. https://doi.org/10.1016/j.ijhydene.2014.02.037
- Nandakumar N., Arularasu M. // Int. Res. J. Eng. Technol. (IRJET). 2015. V. 2. Iss. 6. P. 1245. https://www.irjet.net/archives/V2/i6/IRJET-V2I6187.pdf
- Jayaraman K., Chauveau C., Gökalp I. // Energy Power Eng. 2015. V. 7. P. 426.
- Liu S., Fan M.-Q., Wang C. et al. // Int. J. Hydrogen Energy. 2012. V. 37. Iss. 1. P. 1014. https://doi.org/10.1016/j.ijhydene.2011.03.029
- Liu D., Gao Q., An Q. et al. // Crystals. 2020. V. 10. Iss. 3. P. 167. https://doi.org/10.3390/cryst10030167
- Liu S., Fan M.-Q., Wang C. et al. // Int. J. Hydrogen Energy. 2012. V. 37. Iss. 1. P. 1014. https://doi.org/10.1016/j.ijhydene.2011.03.029
- Шейндлин А.Е., Жук А.З. // Рос. хим. журн. 2006. Т. L. № 6. С. 105.
- Rehbinder P.A., Shchukin E.D. // Progress Surf. Sci. 1972. V. 3. Iss. 2. P. 97. https://doi.org/10.1016/0079-6816(72)90011-1
- Nizovskii A.I., Kulikov A.V., Trenikhin M.V., Bukhtiyarov V.I. // Catal. Sustain. Energy. 2017. V. 4. Iss. 1. P. 62. https://doi.org/10.1515/cse-2017-0010
- Hugo R.C., Hoagland R.G. // Acta Mater. 2000. V. 48. Iss. 8. P. 1949. https://doi.org/10.1016/S1359-6454(99)00463-2
- Ziebarth J.T., Woodall J.M., Kramer R.A., Go C. // Int. J. Hydrogen Energy. 2011. V. 36. Iss. 9. P. 5271. https://doi.org/10.1016/j.ijhydene.2011.01.127
- Мондольфо Л.Ф. Структура и свойства алюминиевых сплавов. М.: Металлургия, 1979. 640 с.
Arquivos suplementares
