Changes in the structure of the amorphous phase under heat treatment and deformation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of heat treatment and deformation on the change in the structure of amorphous alloys Co67Fe7Si12B9Nb5, Al87Ni8Y5, Al88Ni6Y6, Al87Ni8Gd5, Al87Ni8La5, Zr50Cu15Ti16Ni19 obtained by melt quen-ching has been studied. It has been established that both heat treatment and deformation lead to the for-mation of a heterogeneous structure, while structure inhomogeneities can be due to formation the regions both with different concentrations of components (during heat treatment) or/and with different density (free volume concentration). At the early stages of crystallization, the phase composition of the emerging struc-ture depends on the type of impact on the amorphous structure and processing parameters (temperature, type and degree of deformation). The sizes of nanocrystals and the fraction of the nanocrystalline component depend on the prehistory of the sample.

Texto integral

Acesso é fechado

Sobre autores

G. Abrosimova

Institute of Solid State Physics RAS

Autor responsável pela correspondência
Email: gea@issp.ac.ru
Rússia, 142432, Chernogolovka

Bibliografia

  1. Yavari A.R. // Acta Metall. 1988. ,V. 36. P. 1863.
  2. Abrosimova G.E., Aronin A.S., Pankratov S.P., Serebryakov A.V. // Scr. Metall. 1980. V.14. P. 967.
  3. Altounian Z., Batalla E., Strom-Olsen J.O., WalterJ.L. // J. Appl. Phys. 1987. V. 61. P. 149.
  4. Abrosimova G., Aronin A., Ignatieva E. // Mater. Sci. Eng. A. 2007. V. 449–451. P. 485. https://doi.org/10.016/j.msea.2006.02.344
  5. Абросимова Г.Е., Аронин А.С., Стельмух В.А. // ФТТ. 1991. Т. 33. С. 3570.
  6. Jiang, W.H., Atzmon, M. // Acta Mater. 2003. V. 51. Iss. 14. P. 4095. https://doi.org/10.1016/S1359-6454(03)00229 -5
  7. Pan J., Chen Q., Liu L., Li Y. // Acta Mater. 2011. V. 59. P. 5146. https://doi.org/10.1016/j.actamat.2011.04.047
  8. Maaß R., Samwer K., Arnold W., Volkert C.A. // Appl. Phys. Lett. 2014. V. 10. P. 17190. https://doi.org/10.1063/1.4900791
  9. Rösner H., Peterlechler M., Kűbel C., Schmidt V., Wil-de G. // Ultramicroscopy. 2014. V. 142. P. 1. https://doi.org/10.1016/j.ultramic.2014.03.006
  10. Greer A.L., Cheng Y.Q., Ma E. // Mater. Sci. Eng. R. 2013. V. 74. Iss. 4. P. 71. https://doi.org/10.1016/j.mser.2013.04.001
  11. Csontos A.A, Shiflet G.J. // Nano Struct. Mater. 1997. V. 9. P. 281.
  12. Georgarakis K., Aljerf M., Li Y., LeMoulec A., Char-lot F., Yavari A.R., Chornokhvostenko K., Tabachniko- va E., Evangelakis G.A., Miracle D.B., Greer A.L., Zhang T. // App. Phys. Lett. 2008. V. 93. P. 031907. https://doi.org/10.1063/1.2956666
  13. Jiang W.H., Atzmon M. // Acta Mater. 2003. V. 51. P. 4095. https://doi.org/10.1016/S1359-6454 (03)002 29-5
  14. Schmidt V., Rösner H., Peterlechler M., Wilde G. // Phys. Rev. Lett. 2015. V. 115. P. 035501. https://doi.org/10.1103/PhysRevLett.115.035501
  15. Seleznev M., Vinogradov A. // Metals. 2020. V. 10. P. 374. https://doi.org/10.3390/Met10030374
  16. Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. // Prog. Mater. Sci. 2000. V. 45. P. 103.
  17. Chen H.S., Turnbull D. // Acta Metal. 1969. V. 17. P. 1021.
  18. Mehra M., Schulz R., Johnson W.L. // J. Non-Cryst. Solids. 1984. V. 61–62. P. 859.
  19. Osamura K. // Colloid. Polymer Sci. 1981. V. 259. P. 677
  20. Mak A., Samwer K., Johnson W.L. // Phys. Lett. 1093. V. 98A. P. 353.
  21. Hermann H., Mattern N., Kuhn U., Heinemann A., Lazarev N. // J. Non-Cryst. Solids. 2003. V. 317. P. 91. https://doi org/10.1016/S0022-3093(02)019-87-7
  22. Terauchi H. // J. Phys. Soc. Jpn. 1983. V. 52. P. 3454.
  23. Osamura K.J. // Mater. Sci. 1984. V. 19. P. 1917.
  24. Yavari A.R. // Inter. J. Rapid Solidi. 1986. V. 2. P. 047.
  25. Inoue A., Yamamoto M., Kimura H.M., Masomoto T. // J. Mater. Sci.
  26. Abrosimova G.E., Aronin A.S., Ignat’eva E.Yu., Molokanov V.V. // JMMM. 1999. V. 203. P. 169. https://doi.org/10.1016/S0304-8853(99)00216-4
  27. Zeng Q.S. // Proc. Nat. Acad. Sci. USA. 2007. V. 104. P. 13565.
  28. Naudon A., Flank V. // J. Non-Cryst. Solids. 1984. V. 61–62. P. 355.
  29. Gunderov D., Astanin V., Churakova A., Sitdikov V., Ubyivovk E., Islamov A., Jing Tao Wang. // Metals. 2020. V. 10. P. 1433. https://doi.org/10.3390/met 10111433
  30. Abrosimova G., Gunderov D., Postnova E., Aro- nin A. // Materials. 2023. V. 16. P. 1321. https://doi.org/10.3390/ma16031321
  31. Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Materialia. 2017. V. 140. P. 206. http://dx.doi.org/10.1016/j.actamat.2017.08.032
  32. Aronin A.S., Louzguine-Luzgin D.V. // Mechanics Mater. 2017. V. 10. P. 19. https://doi.org/10.1016/j.mechmat.2017.07.007
  33. Aronin A., Budchenko A., Matveev D., Pershina E., Tkatch V., Abrosimova G. // Rev. Adv. Mater. Sci. 2016. V. 46. P. 53. www.ipme.ru/e-journals/RAMS/no_14616/05_14616_aronin.pdf
  34. Aronin A., Abrosimova G., Matveev D., Rybchen- ko O. // Rev. Adv. Mater. Sci. 2010. V. 25. P. 52.
  35. Abrosimova G., Gnesin B., Gunderov D., Drozden-ko A., Matveev D., Mironchuk B., Pershina E., Sho- lin I., Aronin A. // Metals. 2020. V. 10. P. 1329. https://doi.org/10.3390/met10101329
  36. Barkalov O.I., Aronin A.S., Abrosimova G.E., Ponyatovsky E.G. // J. Non-Cryst. Solids. 1996. V. 202. P. 262.
  37. Абросимова Г.Е., Аронин А.С., Гантмахер В.Ф., Левин Ю.Б., Ошеров М.В. // ФТТ. 1988. Т. 30. С. 1424.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. X-ray image of the Al88Ni6Y6 alloy after annealing. The arrow shows the area of distortion of the shape of the first maximum.

Baixar (141KB)
3. Fig. 2. X-ray images of annealed amorphous alloys Al87Ni8Y5 (1), Al87Ni8Gd5 (2 and in the insert) and Al87Ni8La5 (3).

Baixar (211KB)
4. Fig. 3. X-ray images of the Al88Ni6Y6 alloy after annealing (1) and rolling (2). The arrows show the area of distortion of the shape of the first maximum.

Baixar (182KB)
5. Fig. 4. X-ray images of the alloy Co67Fe7Si12B9Nb5 annealed at 420 °C for 1 hour after pre-rolling (a) and without pretreatment (b).

Baixar (262KB)
6. Fig. 5. X–ray images of different sections of the deformed sample: 1 – the area in the grips; 2 - the central section of the sample.

Baixar (211KB)
7. Fig. 6. Radiographs of the Zr55Cu30Al15Ni5 alloy after deformation (1) and after heating (2).

Baixar (170KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024