Dependence of Growth Parameters of Atomic Chains on Changes in the Substrate Temperature

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The growth and evolution of one-dimensional nanostructures on metal stepped surfaces were studied using the kinetic Monte Carlo method. The distribution of nanochain lengths was shown to change differently when the substrate was heated and cooled. Regularities are described that connect the nature of changes in the length distribution and the relative values of diffusion barriers for adatoms on the surface, which will make it possible to predict the length distribution of the resulting one-dimensional nanostructures.

Толық мәтін

Рұқсат жабық

Авторлар туралы

A. Syromyatnikov

Lomonosov Moscow State University; Semenov Federal Research Center for Chemical Physics of the RAS

Хат алмасуға жауапты Автор.
Email: ag.syromyatnikov@physics.msu.ru
Ресей, Moscow; Moscow

S. Kudryashov

Lomonosov Moscow State University

Email: ag.syromyatnikov@physics.msu.ru
Ресей, Moscow

A. Klavsyuk

Lomonosov Moscow State University

Email: ag.syromyatnikov@physics.msu.ru
Ресей, Moscow

A. Saletsky

Lomonosov Moscow State University

Email: ag.syromyatnikov@physics.msu.ru
Ресей, Moscow

Әдебиет тізімі

  1. Клавсюк А.Л., Салецкий А.М. // Успехи физических наук. 2015. Т. 185. № 10. С. 1009. https://doi.org/10.3367/UFNr.0185.201510a.1009
  2. Сыромятников А.Г., Колесников С.В., Салецкий А.М., Клавсюк А.Л. // Успехи физических наук. 2021. Т. 191. № 07. С. 705. https://doi.org/10.3367/UFNr.2020.06.038789
  3. Loth S., Baumann S., Lutz C.P., Eigler D.M., Heinrich A.J. // Science. 2012. V. 335. № 6065. P. 196. https://doi.org/10.1126/science.1214131
  4. Fölsch S., Hyldgaard P., Koch R., Ploog K.H. // Phys. Rev. Lett. 2004. V. 92. № 5. P. 056803. https://doi.org/10.1103/PhysRevLett.92.056803
  5. Vu Q.H., Morgenstern K. // Phys. Rev. B. 2017. V. 95. № 12. Р. 125423. https://doi.org/10.1103/PhysRevB.95.125423
  6. Frenken J.W.M., Groot I.M.N. // MRS Bull. 2017. V. 42. № 11. P. 834. https://doi.org/10.1557/mrs.2017.239
  7. Ferstl P., Hammer L., Sobel C., Gubo M., Heinz K., Schneider M. A., Mittendorfer F., Redinger J. // Phys. Rev. Lett. 2016. V. 117. № 4. P. 046101. https://doi.org/10.1103/PhysRevLett.117.046101
  8. Zaki N., Potapenko D., Johnson P. D., Osgood R. M. // Phys. Rev. B. 2009. V. 80. № 15. P. 155419. https://doi.org/10.1103/PhysRevB.80.155419
  9. Gambardella P., Brune H., Kern K., Marchenko V. I. // Phys. Rev. B. 2006. V. 73. № 24. P. 245425. https://doi.org/10.1103/PhysRevB.73.245425
  10. Kuhnke K., Kern K. // J. Phys.: Condens. Matter. 2003. V. 15. № 47. P. S3311. https://doi.org/10.1088/0953-8984/15/47/007
  11. Tonhäuser J., Atiawotse E., Kürpick U., Matzdorf R. // Surf. Sci. 2022. V. 720. P. 122053. https://doi.org/10.1016/j.susc.2022.122053
  12. Kabanov N.S., Heimbuch R., Zandvliet H.J.W., Saletsky A.M., Klavsyuk A.L. // Appl. Surf. Sci. 2017. V. 404. P. 12. https://doi.org/10.1016/j.apsusc.2017.01.206
  13. Schiel C., Vogtland M., Bechstein R., Kühnle A., Maass P. // J. Phys. Chem. C. 2020. V. 124. № 39. P. 21583. https://doi.org/10.1021/acs.jpcc.0c06676
  14. Syromyatnikov A.G., Saletsky A.M., Klavsyuk A.L. // Phys. Rev. B. 2018. V. 97. № 23. P. 235444. https://doi.org/10.1103/PhysRevB.97.235444
  15. Сыромятников А.Г., Кудряшов С.А., Салецкий А.М., Клавсюк А.Л. // ЖЭТФ. 2021. Т. 160. Вып. 3. С. 410. https://doi.org/10.31857/S0044451021090078
  16. Mocking T.F., Bampoulis P., Oncel N., Poelsema B., Zandvliet H.J.W. // Nat. Commun. 2013. V. 4. P. 2387. https://doi.org/10.1038/ncomms3387
  17. Sánchez J.A., González D.L., Einstein T.L. // Phys. Rev. E. 2019. V. 100. № 5. P. 052805. https://doi.org/10.1103/PhysRevE.100.052805
  18. Syromyatnikov A.G., Guseynova M.R., Saletsky A.M., Klavsyuk A.L. // J. Stat. Mech. 2020. V. 2020. № 9. P. 093202. https://doi.org/10.1088/1742-5468/abacb1
  19. Yilmaz M.B., Zimmermann F.M. // Phys. Rev. E. 2005. V. 71. № 2. P. 026127. https://doi.org/10.1103/PhysRevE.71.026127
  20. Сыромятников А.Г., Салецкий А.М., Клавсюк А.Л. // Письма в ЖЭТФ. 2019. Т. 110. Вып. 5. С. 331. https://doi.org/10.1134/S0370274X19170089
  21. Tokar V.I., Dreyssé H. // Surf. Sci. 2015. V. 637–638. P. 116. https://doi.org/10.1016/j.susc.2015.03.029

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic representation of the main events in the calculation model and diffusion barriers for these events

Жүктеу (199KB)
3. Fig. 2. Equilibrium distributions of chain lengths in the Ag/Pt(997) system at low temperature (dashed line) and high temperature (solid line)

Жүктеу (115KB)
4. Fig. 3. Diagram of nanocircuit length distribution as a function of initial (T1) and final (T2) temperature: 1 - sample heating, average length increases; 2 - distribution does not change; 3 - sample cooling, average length of nanostructures decreases. TC - critical temperature

Жүктеу (135KB)
5. Fig. 4. Diagram of the morphology of the growth of nanochains on a stepped surface depending on the ratio of diffusion barriers ΔE1 and ΔE2: 1 - chains of finite length are growing; 2 - monomers instead of chains are formed

Жүктеу (134KB)

© Russian Academy of Sciences, 2024