Simulation of Optical Parameters of Scintillation Position-Sensitive Detectors with Organic Light Guide

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new method for determining the coordinates in position-sensitive detectors with an organic fiber and silicon photomultipliers is described. This method differs from previously used spectrum-shifting fibers or an array of light-sensitive elements. It is based on the absorption of photons in the volume of the fiber and the reduction in the number of photons. Depending on the path length, the number of photons incident on the surface of the silicon photomultiplier varies. The optical parameters of a one-dimensional position-sensitive detector are simulated and the effect of the fiber coating on the amount of light is shown. Simulation of a two-dimensional position-sensitive detector of two types has been also carried out, optical parameters and intensity ratios from different ends of the fiber have been determined. A technique for obtaining maps of intensity ratios and features of their use for determining the coordinates are described. The main features of the manufacture of this type detectors and their influence on the resolution of the final detector are outlined.

About the authors

D. N. Trunov

NRC “Kurchatov Institute” – PNPI; Institute for Nuclear Research RAS

Author for correspondence.
Email: dtrunov@inr.ru
Russia, 188300, Gatchina; Russia, 108840, Moscow, Troitsk

V. N. Marin

NRC “Kurchatov Institute” – PNPI; Institute for Nuclear Research RAS

Email: dtrunov@inr.ru
Russia, 188300, Gatchina; Russia, 108840, Moscow, Troitsk

R. A. Sadykov

Institute for Nuclear Research RAS

Email: dtrunov@inr.ru
Russia, 108840, Moscow, Troitsk

E. V. Altynbaev

NRC “Kurchatov Institute” – PNPI

Email: dtrunov@inr.ru
Russia, 188300, Gatchina

T. I. Glushkova

NRC “Kurchatov Institute” – PNPI

Email: dtrunov@inr.ru
Russia, 188300, Gatchina

References

  1. Cieślak M.J., Gamage K.A.A., Glover R. // Crystals. 2019. V. 9. P. 480.https://doi.org/10.3390/cryst9090480
  2. Kouzes R., Lintereur A., Siciliano E. // Nucl. Instrum. Methods Phys. Res. A. 2015. V. 784. P. 172. https://doi.org/10.1016/j.nima.2014.10.046
  3. Berkowitz E.H. // Nucl. Instrum. Methods. 1969. V. 73. Iss. 2. P. 225. https://doi.org/10.1016/0029-554X(69)90213-4
  4. Stoykov A., Mosset J., Hildebrandt M. // IEEE Trans. Nucl. Sci. 2016. V. 63. № 4. P. 2271.
  5. Stave S., Bliss M., Kouzes R., Lintereur A., Robinson S., Siciliano E., Wood L. // Nucl. Instrum. Methods Phys. Res. A. 2015. V. 784. P. 208. https://doi.org/10.1016/j.nima.2015.01.039
  6. Abe F., Amidei D., Apollinari G. // Nucl. Instrum. Methods Phys. Res. A. 1988. V. 271. Iss. 3. P. 387.
  7. https://www.kuraray.com/uploads/5a717515df6f5/ PR0150_psf01.pdf. Дата обращения 15.05.2022.
  8. Nakamura T., Toh K., Honda K. et al. // J. Phys.: Conf. Ser. 2014. V. 528. P. 012042. https://doi.org/10.1088/1742-6596/528/1/012042
  9. Xu C., Garutti E., Mandai S., Charbon E. // 2013 IEEE Nucl. Sci. Symp. and Medical Imaging Conf. (2013 NSS/MIC), Seoul, 27 October–02 November, 2013. P. 6829585. https://doi.org/10.1109/NSSMIC.2013.6829585
  10. Yu Q., Tang B., Huang C. et al. // Nucl. Engin. Technol. 2022. V. 54. Iss. 3. P. 1030. https://doi.org/10.1016/j.net.2021.09.014
  11. https://www.sensl.com/downloads/ds/TN%20-%20 Intro%20to%20SPM%20Tech.pdf. Дата обращения 15.05.2022.
  12. Tang M., Yu Q., Huang C. et al. // Rev. Sci. Instrum. 2022. V. 93. P. 033305. Doi https://doi.org/10.1063/5.0078183
  13. Марин В.Н., Садыков Р.А., Трунов Д.Н., Литвин В.С., Аксенов С.Н., Столяров А.А. // Письма в журн. технической физики. 2015. Т. 41. № 18. С. 96.
  14. Литвин В.С., Марин В.Н., Караевский С.Х., Трунов Д.Н., Аксенов С.Н., Столяров А.А., Садыков Р.А. // Кристаллография. 2016. Т. 61. № 1. С. 115.
  15. https://lambdares.com/tracepro/ Дата обращения 15.05.2022.
  16. Zhu C., Liu Q. // J. Biomed. Opt. 2013. V. 18. Iss. 5. P. 50902. https://doi.org/10.1117/1.JBO.18.5.050902. PMID: 23698318
  17. http://geant4.cern.ch/. Дата обращения 15.05.2022.
  18. Xie S., Zhu Z., Zhang X., Xie Q., Yu H., Zhang Y., Xu J., Peng Q. // Sensors. 2021. V. 21. P. 4681. https://doi.org/10.3390/s21144681
  19. Schuemann J. // Med. Phys. 2014. V. 41. P. 047302. https://doi.org/10.1118/1.4869177
  20. Бушама Л., Громушкин Д.М., Дмитриева А.Н. // Ученые записки физ. фак-та Моск. ун-та. 2018. № 4. С. 1840202.
  21. http://xn–80aam0alg.xn–p1ai/. Дата обращения 15.05.2022.
  22. https://eljentechnology.com/products/accessories/ej-510. Дата обращения 15.05.2022.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (9KB)
3.

Download (21KB)
4.

Download (90KB)
5.

Download (447KB)
6.

Download (106KB)
7.

Download (50KB)
8.

Download (75KB)

Copyright (c) 2023 Д.Н. Трунов, В.Н. Марин, Р.А. Садыков, Е.В. Алтынбаев, Т.И. Глушкова