Free Volume in Amorphous Alloys and Its Change under External Influences
- Authors: Abrosimova G.E.1, Aronin A.S.1
-
Affiliations:
- Institute of Solid State Physics RAS
- Issue: No 8 (2023)
- Pages: 98-106
- Section: Articles
- URL: https://archivog.com/1028-0960/article/view/664528
- DOI: https://doi.org/10.31857/S1028096023080022
- EDN: https://elibrary.ru/OEHZWE
- ID: 664528
Cite item
Abstract
The effect of excess free volume on the structure and crystallization of amorphous metal alloys is considered. Its change is an important characteristic of such alloys. Changes in the free volume during structural relaxation, aging, heat treatment, deformation, and irradiation are given. It is shown that the excess free volume fraction in the material depends on the alloy composition and the conditions for its production and changes under various external influences, which can contribute to both a decrease and an increase in the fraction. An increased fraction of excess free volume affects the physical properties, the evolution of the structure, and also contributes to the acceleration of the crystallization of the amorphous phase. The ability to control the free volume fraction in a sample opens up new ways to control the structure and, as a result, the properties of materials.
About the authors
G. E. Abrosimova
Institute of Solid State Physics RAS
Author for correspondence.
Email: gea@issp.ac.ru
Russia, 142432, Chernogolovka
A. S. Aronin
Institute of Solid State Physics RAS
Author for correspondence.
Email: aronin@issp.ac.ru
Russia, 142432, Chernogolovka
References
- Willens R.H., Klement W., Duwez P. // J. Appl. Phys. 1960. V. 31 P. 1136. https://doi.org/10.1063/1.1735777
- Trexler M.M., Thadhani N.N. // Prog. Mater. Sci. 2010. V. 55. P. 759. https://doi.org/10.1016/j.pmatsci.2010.04.002
- Hasani S., Rezaei-Shahreza P., Seifoddini A., Hakimi M. // J. Non-Cryst. Solids. 2018. V. 497. P. 40. https://doi.org/10.1016/j.jnoncrysol.2018.05.021
- Cohen M.H.,Turnbull D. // J. Chem. Phys. 1959. V. 31. P. 1164.
- Doolittle A.K. // J. Appl. Phys. 1951. V. 22. P. 1471.
- Turnbull D., Cohen M.H. // J. Chem. Phys. 1961. V. 34. P. 120.
- Cohen M.H., Grest G.S. // Phys. Rev. B. 1979. V. 20. P. 1077.
- Wen P., Tang M.B., Pan M.X., Zhao D.Q., Zhang Z., Wang W.H. // Phys. Rev. B. 2003. V. 67. P. 212201.
- Haruyama O., Inoue A. // Appl. Phys. Lett. 2006. V. 88. P. 131906.
- Yavari A.R., Moulec A.L., Inoue A., Nishiyama N., Lupu N., Matsubara E., Botta W.J., Vaughan G., Michiel M.D., Kvick Å. // Acta Mater. 2005. V. 53. P. 1611.
- Rätzke K., Hüppe P.W., Faupel F. // Phys. Rev. Lett. 1992. V. 68. P. 2347.
- Dmowski W., Iwashita T., Chuang C. P., Almer J., Egami T. // Phys. Rev. Lett. 2010. V. 105. P. 205502.
- Ramachandrarao P., Cantor B., Cahn R.W. // J. Non-Crystal. Solids. 1977. V. 24. P.109.
- Cohen M.H., Grest G.S. // Phys. Rev. B 1979. V. 20. P. 1077.
- Chen S., Xu D., Zhang H., Chen H., Liu Y., Liang T., Yin Z., Jiang Sh.,Yang K., Zeng J., Lou H., Zeng Zh., Zeng Q. // Phys. Rev. B. 2022. V. 105. P. 144201. https://doi.org/10.1103/PhysRevB.105.144201
- Ramachandrarao P., Cantor B., Cahn R.W. // J. Mater. Sci. 1977. V. 12. P. 2488.
- Cahn R.W. Rapid Solidification Processing: Principles and Technologies / Eds. R. Mehrabian et al. LA: Clattor’s Baton Rouge, 1978.
- Chen L.Y., Fu Z.D., Zhang G.Q., Hao X.P., Jiang Q.K., Wang X.D., Cao Q.P., Franz H., Liu Y.G., Xie H.S., Zhang S.L., Wang B.Y., Zeng Y.W., Jiang J.Z. // Phys. Rev. Lett. 2008. V. 100. P. 075501.
- Murali P., Ramamurty U. // Acta Mater. 2005. V. 53. P. 1467.
- Ketov S.V., Sun Y.H., Nachum S., Lu Z., Checchi A., Beraldin A.R., Bai H.Y., Wang W.H., Louzguine-Luzgin D.V., Carpenter M.A. // Nature. 2015. V. 524. P. 200.
- Abrosimova G., Volkov N., Pershina E., Tran Van Tuan, Aronin A. // J. Non-Cryst. Solids. 2019. V. 528. P. 119751. https://doi.org/10.1016/j.jnoncrysol.2019.119751
- Taub A.I., Spaepen F. // Acta Metall. 1980. V. 28. P. 1781.
- Ruitenberg G., Hey P.D., Sommer F., Sietsma J. // Phys. Rev. Lett. 1997. V. 79. P. 4830.
- Xu Y., Fang J., Gleiter H., Horst H., Li J. // Scr. Mater. 2010. V. 62. P. 674.
- Slipenyuk A., Eckert J. // Scr. Mater. 2004 V. 50. P. 39.
- Launey M.E., Kruzic J.J., Li C., Busch R. // Appl. Phys. Lett. 2007. V. 91. P. 051913.
- Egami T. // Mat. Res. Bull. 1978. V. 13. P. 557.
- Liebermann H.H., Graham C.D., Flanders P.J., Jr. // IEEE Trans. Mag. 1977. V. MAG-13. P. 1541.
- Williams R., Egami T. // IEEE Trans. Mag. 1976. V. MAG-12. P. 927.
- Egami T. // J. Am. Ceram. Soc. 1977. V. 60. P. 128.
- Chen H.S., Leamy H.J., Barmatz M. // J. Non-Cryst. Solids. 1970. V. 5. P. 444.
- Soshiroda T., Koiwa M., Masumoto T. // J. Non-Cryst. Solids. 1976. V. 21. P. 688.
- Berry B.S., Pritchet W.C. // Phys. Rev. Lett. 1975. V. 34. P. 1022.
- Chou C.-P.P., Turnbull D. // J. Non-Cryst. Solids. 1975. V. 17. P. 169.
- Gunderov D., Astanin V., Churakova A., Sitdikov V., Ubyivovk E., Islamov A., Jing Tao Wang // Metals. 2020. V. 10. P. 1433. https://doi.org/10.3390/met10111433
- Nishiyama N., Horino M., Inoue A. // Mater. Trans JIM. 2000. V. 41. № 11. P. 1432. https://doi.org/10.2320/matertrans1989.41.1432
- Chen H.S. // J. Appl. Phys. 1978. V. 49. P. 3289. https://doi.org/10.1063/1.325279
- Meng F., Tsuchiya K., Seiichiro I.I., Yokoyama Y. // Appl. Phys. Lett. 2012. V. 101. № 12. P. 121914. https://doi.org/10.1063/1.4753998
- Boltynjuk E., Gunderov D., Ubyivovk E., Monclús M., Yang L., Molina-Aldareguia J., Tyurin A., Kilmametov A., Churakova A., Churyumov A. // J. Alloys Compd. 2018. V. 747. P. 595. https://doi.org/10.1016/j.jallcom.2018.03.018
- Aronin A.S., Louzguine-Luzgin D.V. // Mechan. Mater. 2017. V. 113. № 10. P. 19. https://doi.org/10.1016/j.mechmat.2017.07.007
- Mironchuk B., Abrosimova G., Bozhko S., Pershina E., Aronin A. // J. Non-Crystal. Solids. 2022. V. 571. P. 121279. https://doi.org/10.1016/j.jnoncrysol.2021.121279
- Li Q.-K., Li M. // Mater.Trans. 2007. V. 48. № 7. P. 1816. doi: 102320/matertrans.MJ200875
- Jiang W.H., Atzmon M. // Acta Mater. 2003. V. 51. № 14. P. 4095. https://doi.org/10.1016/S1359-6454(03)00229-5
- Maaß R., Birckigt P., Borchers C., Samwer K., Volkert C.A. // Acta Mater. 2015. V. 98. P. 94. https://doi.org/10.1016/j.actamat.2015.06.062
- Greer A.L., Cheng Y.Q., Ma E. // Mater. Sci. Eng. R. 2013. V. 74. № 4. P. 71. https://doi.org/10.1016/j.mser.2013.04.001
- Rösner H., Peterlechner M., Kübel Ch., Schmidt V., Wilde G. // Ultramicroscopy. 2014. V. 142. № 7. P. 1. https://doi.org/10.1016/j.ultramic.2014.03.006
- Schmidt V., Rösner H., Peterlechler M., Wilde G. // Phys. Rev. Lett. 2015. V. 115. № 7. P. 035501. https://doi.org/10.1103/PhysRevLett.115.035501
- Абросимова Г.Е., Матвеев Д.В., Аронин А.С. // УФН. 2022. Т. 192. № 3. P. 247. https://doi.org/10.3367/UFNr.2021.04.038974
- Gunderov D., Astanin V., Churakova A., Sitdikov V., Ubyivovk E., Islamov A., Wang J.T. // Metals. 2020. V. 10. № 11. P. 1433. https://doi.org/10.3390/met10111433
- Chen Y.M., Ohkubo T., Mukai T., Hono K. // J. Mater. Res. 2009. V. 24. P. 1. https://doi.org/10.1557/jmr.2009.0001
- He J., Kaban I., Mattern N., Song K., Sun B., Zhao J., Kim D. H., Eckert J., Greer A.L. // Sci. Rep. 2016. V. 6. P. 25832. https://doi.org/10.1038/srep25832
- Liu C., Roddatis V., Kenesei P., Maaß R. // Acta Mater. 2017. V. 140. P. 206. https://doi.org/10.1016/j.actamat.2017.08.032
- Chen Z.Q., Huang L., Wang F., Huang P., Lu T.J., Xu K.W. // Mater. Design. 2016. V. 109. P. 179. https://doi.org/10.1016/j.matdes.2016.07.069
- Abrosimova G., Chirkova V., Pershina E., Volkov N., Sholin I., Aronin A. // Metals. 2022. V. 12. P. 332. https://doi.org/10.3390/met12020332
- Cremaschi V., Arcondo B., Sirkin H., Vazquez M., Asenjo A., Garcia J.M., Abrosimova G., Aronin A. // J. Mater. Res. 2000. V. 15. № 9. P. 1936. https://doi.org/10.1557/JMR.2000.0279
- Abrosimova G.E., Aronin A.S., Kir’janov Yu.V., Matveev D.V., Zver’kova I.I., Molokanov V.V., Pan S., Slipenyuk A. // J. Mater. Sci. 2001. V. 36. № 16. P. 3933.
- Abrosimova G., Matveev D., Pershina E., Aronin A. // Mater. Lett. 2016. V. 183. P. 131. https://doi.org/10.1016/j.matlet.2016.07.053
- Abrosimova G., Aronin A. // Mater. Lett. 2017. V. 206. P. 64. https://doi.org/10.1016/j.matlet.2017.06.098
- Абросимова Г.Е., Аронин А.С. // ФТТ. 2017. Т. 59. Вып. 11. С. 2227.
- Hirata A., Guan P., Fujita T., Hirotsu Y., Inoue A., Yavary A., Sakurai T., Chen M. // Nature Mater. 2011. V. 10. P. 28. https://doi.org/10.1038/nmat2897
- Abrosimova G., Aronin A., Budchenko A. // Mater. Lett. 2015. V. 139. P. 194. https://doi.org/10.1016/j.matlet.2014.10.076
- Abrosimova G.E., Aronin A.S. // Int. J. Rapid Solidif. 1991. V. 6. P. 29.
- Абросимова Г.Е., Аронин А.С., Волков Н.А. // ФТТ. 2019. Т. 61. С. 1352.
- Volkov N., Abrosimova G., Aronin A. // Mater. Lett. 2019. V. 265. P. 127431. https://doi.org/10.1016/j.matlet.2020.127431
- Абросимова Г.Е. // УФН. 2011. Т. 181. № 12. С. 1265. https://doi.org/10.3367/UFNr.0181.201112b.1265
- Doi K. // J. Non-Cryst. Solids 1979. V. 34. P. 405.
- Gerling R. // Scripta Met. 1982. V. 16. P. 963.
Supplementary files
