Development of a One-Dimensional Counting Detector for Diffraction Experiments at a Synchrotron Radiation Beam

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article describes a one-coordinate detector for diffraction experiments on a synchrotron radiation beam. The detector is being developed at the Budker Institute of Nuclear Physics SB RAS. Until recently the Institute was developing gas one-coordinate detectors, in particular a one-coordinate detector with calculated channels OD-3M, based on the technology of multi-wire proportional cameras. To provide a spatial resolution of better than 100 microns at photon energy in a wide energy range (3–30 keV), it is necessary to use solid-state microstrip or matrix sensors in combination with specialized integrated registration circuits. The developed SOCOD detector, using a microstrip sensor based on gallium arsenide as a recording element, operates in the mode of direct counting of photons with an energy of more than 3–4 keV and a speed of up to 1 MHz/channel. The article gives a general description of the current version of the detector, the block diagram of the recording channel, the software that allows users to control the operation of the detector and display the results obtained, and the developed algorithm for leveling the trigger thresholds in the channels. The results of electronic tests, the work of the alignment algorithm and their discussion are presented.

About the authors

V. M. Aulchenko

Budker Institute of Nuclear Physics SB RAS

Email: A.A.Glushak@inp.nsk.su
Russia, 630090, Novosibirsk

A. A. Glushak

Budker Institute of Nuclear Physics SB RAS; Novosibirsk State University; Synchrotron Radiation Facility SKIF, Boreskov Institute of Catalysis SB RAS; Tomsk State University; Novosibirsk State Technical University

Author for correspondence.
Email: A.A.Glushak@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Russia, 634050, Tomsk; Russia, 630073, Novosibirsk

V. V. Zhulanov

Budker Institute of Nuclear Physics SB RAS; Novosibirsk State University

Email: A.A.Glushak@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk

V. M. Titov

Budker Institute of Nuclear Physics SB RAS

Email: A.A.Glushak@inp.nsk.su
Russia, 630090, Novosibirsk

L.I. Shekhtman

Budker Institute of Nuclear Physics SB RAS; Novosibirsk State University; Tomsk State University

Email: A.A.Glushak@inp.nsk.su
Russia, 630090, Novosibirsk; Russia, 630090, Novosibirsk; Russia, 634050, Tomsk

References

  1. Schmitt B. et al. // Nucl. Instrum. Methods Phys. Res. A. 2003. V. 501. P.267. https://doi.org/10.1016/S0168-9002(02)02045-4
  2. Bergamaschi A. et al. // J. Synchrotron Rad. 2010. V. 17. P. 653. https://doi.org/10.1107/S0909049510026051
  3. Heijne E.H.M. // Radiation Measurements. 2021. V. 140. P. 106436. https://doi.org/10.1016/j.radmeas.2020.106436
  4. Mozzanica A., Bergamaschi A., Dinapoli R. et al. // Nucl. Instrum. Methods Phys. Res. A. 2009. V. 607. P. 250. https://doi.org/10.1016/j.nima.2009.03.166
  5. Aulchenko V.M., Zhulanov V.V., Kulipanov G.N. et al. // Physics-Uspekhi. 2018. V. 61. № 6. P. 515. https://doi.org/10.3367/UFNe.2018.01.038339
  6. Pruuel E.R., Ten K.A., Tolochko B.P. et al. // Technical Phys. 2013. V. 58. № 1. P. 24. https://doi.org/10.1134/S1028335813010035
  7. Titov V.M., Pruuel E.R., Ten K.A. et al. // Combustion, Explosion and Shock Waves. 2011. V. 47. № 6. P. 615. https://doi.org/10.1134/S0010508211060013
  8. Aulchenko V., Ponomarev S., Shekhtman L. et al. // Nucl. Instrum. Methods. Phys. Res. A. 2003. V. 513. P. 388. https://doi.org/10.1016/j.nima.2003.08.067
  9. Aulchenko V., Zhulanov V., Shekhtman L. et al. // Nucl. Instrum. Methods. Phys. Res. A. 2005. V. 543. P. 350. https://doi.org/10.1016/j.nima.2005.01.254
  10. Aulchenko V.M., Evdokov O.V., Shekhtman L.I. et al. // J. Instrumentation. 2008. V. 3. P. 05005. https://doi.org/10.1088/1748-0221/3/05/P05005
  11. Aulchenko V.M., Evdokov O.V., Shekhtman L.I. et al. // Nucl. Instrum. Methods. Phys. Res. A. 2009. V. 603. P. 73. https://doi.org/10.1016/j.nima.2008.12.163
  12. Aulchenko V.M., Baru S.E., Evdokov O.V. et al. // Nucl. Instrum. Methods. Phys. Res. A. 2010. V. 623. P. 600. https://doi.org/10.1016/j.nima.2010.03.083
  13. Shekhtman L.I., Aulchenko V.M., Kudryavtsev V.N. et al. // Phys. Procedia. 2016. V. 84. P. 189. https://doi.org/10.1016/j.phpro.2016.11.033
  14. Aulchenko V., Pruuel E., Shekhtman L., et al. // Nucl. Instrum. Methods Phys. Res. A. 2017. V. 845. P. 169. https://doi.org/10.1016/j.nima.2016.05.096
  15. Shekhtman L.I., Aulchenko V.M., Zhulanov V.V. et al. // Bulletin of the RAS: Phys. 2019. V. 83. № 2. P. 220. https://doi.org/10.3103/S1062873819020254
  16. Aulchenko V.M., Bukin M.A., Velikzhanin Yu.S. et al. // Nucl. Instrum. Methods Phys. Res. A. 1998. V. 405. P. 269. https://doi.org/10.1016/S0168-9002(97)00169-1
  17. Aulchenko V.M., Evdokov O.V., Kutovenko V.D. et al. // Nucl. Instrum. Methods. Phys. Res. A. 2009. V. 603. P. 76. https://doi.org/10.1016/j.nima.2008.12.164
  18. Aulchenko V.M., Baru S.E., Sidorov V.A. et al. // Nucl. Instrum. Methods Phys. Res. 1983. V. 208. Iss. 1–3. P. 443. https://doi.org/10.1016/0167-5087(83)91166-3

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (97KB)
4.

Download (52KB)
5.

Download (92KB)
6.

Download (53KB)

Copyright (c) 2023 В.М. Аульченко, А.А. Глушак, В.В. Жуланов, В.М. Титов, Л.И. Шехтман