Estimation of Porosity of Microarc Oxide Coating Based on Optical Image Recognition

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The work is aimed at solving the problem of improving the quality control of coatings with a porous structure. The problem arises due to the lack of an effective and nondestructive method for assessing the porosity of microarc oxide coatings. Accurate porosity control is necessary to ensure the reliability and durability of coatings, as well as to prevent their defects. The use of optical image recognition techniques can improve the process of indirect measurement of coating porosity and improve the quality of control without affecting the object. The factors affecting the porosity of the microarc oxide coating, as well as methods for its determination, are systematized. A method for estimating the porosity of oxide coatings of AD31 aluminum alloy samples is proposed based on a recognition program written in the MATLAB R2020a environment, surface morphology images using modern microscopy methods. A statistical analysis of the surface morphology was carried out, which confirmed good agreement between the porosity estimate and the data obtained during image processing using scanning electron microscope software. The relative error of the proposed method does not exceed 10%. The scientific novelty of the work consists in the development of algorithms for a unique nondestructive testing method — recognition of porous structures based on optical data, which contribute to increasing the efficiency of porosity estimation and improving the characteristics of oxide coatings.

作者简介

E. Pecherskaya

Penza State University

编辑信件的主要联系方式.
Email: pea1@list.ru
俄罗斯联邦, Penza, 400026

A. Maksov

Penza State University

Email: pea1@list.ru
俄罗斯联邦, Penza, 400026

S. Konovalov

Penza State University; Siberian State Industrial University

Email: pea1@list.ru
俄罗斯联邦, Penza, 400026; Novokuznetsk, 654007

P. Golubkov

Penza State University

Email: pea1@list.ru
俄罗斯联邦, Penza, 400026

M. Mitrohin

Penza State University

Email: pea1@list.ru
俄罗斯联邦, Penza, 400026

S. Gurin

Penza State University

Email: pea1@list.ru
俄罗斯联邦, Penza, 400026

M. Novichkov

Penza State University

Email: pea1@list.ru
俄罗斯联邦, Penza, 400026

参考

  1. Buling А., Zerrer J. // Surf. Coat. Technol. 2019. V. 369. P. 142. https://doi.org/10.1016/j.surfcoat.2019.04.025
  2. Molaei M., Fattah-alhossini A., Nouri M., Nourian A. // Ceram. Int. 2022. V. 48. Iss. 5. P. 6322. https://doi.org/10.1016/j.ceramint.2021.11.175.
  3. Trushkina T.V., Mikheev A.E., Girn A.V., Vakhteev E.V., Orlova D.V. // Reshetnev Readings. 2011. V. 1. P. 38. https://cyberleninka.ru/article/n/otsenka-poristosti-pokrytiy-na-alyuminievyh-splavah-poluchennyh-mikrodugovym-oksidirovaniem
  4. Trushkin T.V., Girn A.V., Ravodina D.V., Alyakretsky R.V. // Reshetnev Readings. 2014. V. 1. P. 443. https://cyberleninka.ru/article/n/vliyanie-tehnologicheskih-parametrov-na-poristost-mdo-pokrytiy.
  5. Golubkov P.E., Pecherskaya E.A., Gurin S.A., Alexandrov V.S., Artamonov D.V., Maksov A.A. // St. Petersburg State Polytech. University J. Phys. Math. 2023. V. 16 (3.1). P. 368. https://doi.org/10.18721/JPM.163.167
  6. Fatimah S., Kim Y.G., Yoon D.K., Ko Y.G. // Surf. Coat. Technol. 2020. V. 385. P. 125383. https://doi.org/10.1016/j.surfcoat.2020.125383
  7. Mortazavi G., Jiang J., Meletis E.I. // Appl. Surf. Sci. 2019. V. 488. P. 370. https://doi.org/10.1016/j.apsusc.2019.05.250
  8. Moon S., Jeong Y. // Corrosion Sci. 2009. V. 51. P. 1506. https://doi.org/10.1016/j.corsci.2008.10.039
  9. Pecherskaya E.A., Golubkov P.E., Karpanin O.V., Artamonov D.V., Safronov M.I., Pecherskiy A.V. // Proc. Univ. Electronics. 2019. V. 24 (4). P. 363. https://doi.org/10.24151/1561-5405-2019-24-4-363-369
  10. Mozafarnia H., Fattah-Alhosseini A., Chaharmahali R., Nouri M., Keshavarz M.K., Kaseem M. // Coatings. 2022. V. 12. P. 1967. https://doi.org/10.3390/coatings12121967
  11. Hafili F., Chaharmahali R., Babaei K., Fattah-alhosseini A. // Corrosion Commun. 2021. V. 3. P. 62. https://doi.org/10.1016/j.corcom.2021.09.005
  12. Moga S.G., Negrea D.A., Ducu C.M., Malinovschi V., Schiopu A.G., Coaca E., Patrascu I. // Appl. Sci. 2022. V. 12. P. 12848. https://doi.org/10.3390/app122412848
  13. Jangde A., Kumar S., Blawert C. // J. Magn. Alloys. 2020. V. 8. P. 692. https://doi.org/10.1016/j.jma.2020.05.002
  14. Parfenova L.V., Galimshina Z.R., Gil`fanova G.U. et al. // Surf. Interfaces. 22. V. 28. P. 101678. https://doi.org/10.1016/j.surfin.2021.101678
  15. Golubkov P.E., Pecherskaya E.A., Karpanin O.V., Shepeleva Y.V., Zinchenko T.O., Artamonov D.V. // J. Phys.: Conf. Ser. 2017. V. 917. P. 092021. https://www.doi.org/10.1088/1742-6596/917/9/092021
  16. Pecherskaya E.A., Golubkov P.E., Artamonov D.V., Melnikov O.A., Karpanin O.V., Zinchenko T.O. // IEEE Trans. Plasma Sci. 2021. V. 49. Iss. 9. P. 2613. https://www.doi.org/10.1109/TPS.2021.3091830
  17. Interstate standard GOST 4784-97 “Aluminum and Aluminum Alloys Deformable. Stamps” (put into effect by Resolution № 433 of the State Standard of the Russian Federation dated December 8, 1998). https://base.garant.ru/5703611/
  18. Pecherskaya E.A., Golubkov P.E., Novichkov M.D., Gurin S.A., Metal’nikov A.M. // Measur. Tech. 2023. V. 66. № 6. P. 420. https://doi.org/10.1007/s11018-023-02243-4
  19. Pecherskaya E., Semenov A., Golubkov P., Gurin S., Artamonov D., Shepeleva Y. // Heliyon. 2023. V. 9. № 9. P. e19995. https://doi.org/10.1016/j.heliyon.2023.e19995
  20. Pecherskaya E.A., Semenov A.D., Golubkov P.E. // Frontier Mater. Technol. 2023. V. 4. P. 73. https://doi.org/10.18323/2782-4039-2023-4-66-7
  21. Melnikov O.A., Pecherskaya E.A., Golubkov P.E., Kozlov G.V., Alexandrov V.S. // St. Petersburg State Polytech. University J. Phys. Math. 2023. V. 16. № 3.1. P. 335. https://doi.org/10.18721/JPM.163.161

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025