Velocity Effect in Synthesis of Noncircular Nanopores by Etching Tracks of Swift Heavy Ions in Olivine
- 作者: Gorbunov S.A.1, Babaev P.A.1, Volkov A.E.1, Voronkov R.A.1, Rymzhanov R.A.2
-
隶属关系:
- Lebedev Physical Institute of the RAS
- Joint Institute of Nuclear Researches
- 期: 编号 6 (2024)
- 页面: 62-69
- 栏目: Articles
- URL: https://archivog.com/1028-0960/article/view/664810
- DOI: https://doi.org/10.31857/S1028096024060098
- EDN: https://elibrary.ru/DVBBOO
- ID: 664810
如何引用文章
详细
The velocity effect was studied in the synthesis of nanopores with a noncircular cross section by etching tracks of swift heavy ions in olivine. The developed atomistic model for the etching of olivine irradiated with swift heavy ions predicts the possibility of synthesizing nanopores with a noncircular cross section in it. The model consists of connected blocks that describe the sequential stages of track formation and etching. The TREKIS Monte Carlo model describes the initial electronic and lattice excitations in the nanoscale vicinity of the trajectory of an incident ion. These results are used as initial conditions for molecular dynamics simulation of structural changes along the ion trajectory. The obtained atomic coordinates after cooling of the structurally damaged area serve as the initial data for the original atomistic model of track etching in olivine. The results of the model application show that it is possible to control the cross section of these pores by changing the orientation of the crystal relative to the direction of irradiation. The presented simulation results for Xe ions demonstrate that the size of the resulting pores depends on the velocity of the incident ion, and not only on its linear energy loss.
作者简介
S. Gorbunov
Lebedev Physical Institute of the RAS
编辑信件的主要联系方式.
Email: gorbunovsa@lebedev.ru
俄罗斯联邦, Moscow
P. Babaev
Lebedev Physical Institute of the RAS
Email: gorbunovsa@lebedev.ru
俄罗斯联邦, Moscow
A. Volkov
Lebedev Physical Institute of the RAS
Email: gorbunovsa@lebedev.ru
俄罗斯联邦, Moscow
R. Voronkov
Lebedev Physical Institute of the RAS
Email: gorbunovsa@lebedev.ru
俄罗斯联邦, Moscow
R. Rymzhanov
Joint Institute of Nuclear Researches
Email: gorbunovsa@lebedev.ru
俄罗斯联邦, Dubna
参考
- Komarov F.F. // Physics-Uspekhi. 2017. V. 60. P. 435.
- Kozhina E.P., Bedin S.A., Nechaeva N.L., Podoyni-tsyn S.N., Tarakanov V.P., Andreev S.N., Grigoriev Y.V., Naumov A.V. // Appl. Sci. 2021. V. 11. P 1375. https://doi.org./10.3390/APP11041375
- Apel P. // Radiat. Meas. Pergamon. 2001. V. 34. № 1–6. P. 559. https://doi.org./10.1016/S1350-4487(01)00228-1
- Barth W., Bayer W., Dahl L., Groening L., Richter S., Yaramyshev S. // Nucl. Instrum. Methods Phys. Res. A. 2007. V. 577. № 1–2. P. 211. https://doi.org./10.1016/J.NIMA.2007.02.054
- Apel P.Y. // Radiat. Phys. Chem. 2019. V. 159. P. 25. https://doi.org/10.1016/j.radphyschem.2019.01.009
- Hadley A., Notthoff C., Mota-Santiago P., Hossain U.H., Kirby N., Toimil-Molares M.E., Trautmann C., Kluth P. // Nanotechnology. 2019. V. 30. № 27. P. 274001. https://doi.org./10.1088/1361-6528/ab10c8
- Bruschi L., Mistura G., Prasetyo L., Do D.D., Dipalo M., De Angelis F. // Langmuir. 2018. V. 34. № 1. P. 106. https://doi.org./10.1021/ACS.LANGMUIR.7B03695
- Wu K., Chen Z., Li X. // Chem. Eng. J. 2015. V. 281. P. 813. https://doi.org./10.1016/J.CEJ.2015.07.012
- Prakash S., Pinti M., Bellman K. // J. Micromechan. Microeng. 2012. V. 22. № 6. P. 067002. https://doi.org./10.1088/0960-1317/22/6/067002
- Patterson N., Adams D.P., Hodges V.C., Vasile M.J., Michael J.R., Kotula P.G. // Nanotechnology. 2008. V. 19. № 23. P. 235304. https://doi.org./10.1088/0957-4484/19/23/235304
- Lang M., Voss K., Neumann R., Al E. // GSI Sci. Rep. 2005. 2006. V. 3. P. 343.
- Alexeev V., Bagulya A., Chernyavsky M., Gippius A., Goncharova L., Gorbunov S., Gorshenkov M., Kalini-na G., Konovalova N., Liu J. et al. // Astrophys. J. 2016. V. 829. № 2. P. 120. https://doi.org./10.3847/0004-637x/829/2/120
- Bagulya A.V., Kashkarov L.L., Konovalova N.S., Okat’eva N.M., Polukhina N.G., Starkov N.I. // JETP Lett. 2013. V. 97. № 12. P. 708. https://doi.org./110.1134/S0021364013120047
- Rymzhanov R.A., Gorbunov S.A., Medvedev N., Volkov A.E. // Nucl. Instrum Methods Phys. Res. B. 2019. V. 440. P. 25. https://doi.org./10.1016/j.nimb.2018.11.034
- Medvedev N., Volkov A.E., Rymzhanov R., Akhmetov F., Gorbunov S., Voronkov R., Babaev P. // J. Appl. Phys. 2023. V. 133. № 10. P. 100701. https://doi.org./10.1063/5.0128774
- Medvedev N.A., Rymzhanov R.A., Volkov A.E. // J. Phys. D. 2015. V. 48. № 35. P. 355303. https://doi.org./10.1088/0022-3727/48/35/355303
- Thompson A.P., Aktulga H.M., Berger R., Bolintinea-nu D.S., Brown W.M., Crozier P.S., in’t Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. // Comput. Phys. Commun. 2022. V. 271. P. 108171. https://doi.org./10.1016/J.CPC.2021.108171
- Gorbunov S.A., Babaev P.A., Rymzhanov R.A., Volkov A.E., Voronkov R.A. // J. Phys. Chem. C. 2023. V. 127. № 10. P. 5090. https://doi.org./10.1021/acs.jpcc.2c07236
- Gulbekyan G., Gikal B., Kalagin I., Kazarinov N. // Phys. Part. Nucl. Lett. 2010. V. 7. № 7. P. 511. https://doi.org./10.1134/S1547477110070186
- Matsui M. // Geophys. Res. Lett. 1996. V. 23. № 4. P. 395. https://doi.org./10.1029/96GL00260
- Luce R.W., Bartlett R.W., Parks G.A. // Geochim. Cosmochim. Acta. 1972. V. 36. № 1. P. 35. https://doi.org./10.1016/0016-7037(72)90119-6
- Pokharel R., Gerrits R., Schuessler J.A., von Blancken-burg F. // Chem. Geol. 2019. V. 525. P. 18. https://doi.org./10.1016/J.CHEMGEO.2019.07.001
补充文件
