Chirality Control of Magnetic Vortices in Ferromagnetic Disk–Nanowire System
- 作者: Tatarsky D.A.1,2, Skorokhodov E.V.1, Ermolaeva O.L.1, Mironov V.L.1, Fraerman A.A.1
-
隶属关系:
- Institute for Physics of Microstructures of the RAS
- Nizhny Novgorod Lobachevsky State University
- 期: 编号 6 (2024)
- 页面: 56-61
- 栏目: Articles
- URL: https://archivog.com/1028-0960/article/view/664809
- DOI: https://doi.org/10.31857/S1028096024060089
- EDN: https://elibrary.ru/DVGASS
- ID: 664809
如何引用文章
详细
The results of experimental studies and micromagnetic modeling of magnetic states in a one-dimensional array are presented. The array has the form of a chain of ferromagnetic disks coupled with a ferromagnetic nanowire made of the same material. The disks are located on opposite sides of the nanowire, which makes it possible to obtain distributions when the chiralities of the magnetic vortex shells in neighboring disks alternate, which can find application in vortex spin nanooscillators. Using the application in situ of a magnetic field to an excited objective lens using Lorentz transmission electron microscopy, it is shown that in this system it is possible to control the chiralities of the shells of magnetic vortices, which is realized by magnetization in the sample plane along various azimuthal directions. When wire magnetized along a nanowire, vortex states with opposite chiralities are realized in disks located on opposite sides of it. An antivortex is formed in the nanowire itself at the boundary with the disk, since the local direction of magnetization in the wire and in the disk are anticollinear. When magnetized perpendicular to the nanowire, states with the same chirality are realized in all disks. In this case, two perpendicular domain walls are formed between the disks in the nanowire, and the vortex in the disk is shifted to one of the edges along the nanowire.
作者简介
D. Tatarsky
Institute for Physics of Microstructures of the RAS; Nizhny Novgorod Lobachevsky State University
编辑信件的主要联系方式.
Email: tatarsky@ipmras.ru
俄罗斯联邦, Nizhny Novgorod; Nizhny Novgorod
E. Skorokhodov
Institute for Physics of Microstructures of the RAS
Email: tatarsky@ipmras.ru
俄罗斯联邦, Nizhny Novgorod
O. Ermolaeva
Institute for Physics of Microstructures of the RAS
Email: tatarsky@ipmras.ru
俄罗斯联邦, Nizhny Novgorod
V. Mironov
Institute for Physics of Microstructures of the RAS
Email: tatarsky@ipmras.ru
俄罗斯联邦, Nizhny Novgorod
A. Fraerman
Institute for Physics of Microstructures of the RAS
Email: tatarsky@ipmras.ru
俄罗斯联邦, Nizhny Novgorod
参考
- Usov N.A., Peschany S.E. // J. Magn. Magn. Mater. 1994. V. 12. P. 13. https://www.doi.org/10.1016/0304-8853(93)90428-5
- Guslienko K.Y., Novosad V., Otani Y., Shima H., Fukamichi K. // Phys. Rev. B. 2001. V. 65. P. 024414. https://www.doi.org/10.1103/PhysRevB.65.024414
- Metlov K.L., Guslienko K.Y. // J. Magn. Magn. Mater. 2002. V. 242–245. P. 1015. https://www.doi.org/10.1016/S0304-8853(01)01360-9
- Cowburn R.P., Koltsov D.K., Adeyeye A.O., Welland M.E., Tricker D.M. // Phys. Rev. Lett. 1999. V. 83. P. 1042. https://www.doi.org/10.1103/PhysRevLett.83.1042
- Pribiag V., Krivorotov I., Fuchs, G. Braganca P., Oza-tay P., Sankey J., Ralph D., Buhrman R. // Nat. Phys. 2007. V. 3. P. 498. https://www.doi.org/10.1038/nphys619
- Skirdkov P., Belanovsky A., Zvezdin K.A., Zvezdin A.K., Locatelli N., Grollier J., Cros V. // SPIN. 2012. V. 2. P. 1250005. https://www.doi.org/10.1142/S2010324712500051
- Dussaux A., Georges B., Grollier J., Cros V., Khvalkov-skiy A.V., Fukushima A., Konoto M., Kubota H., Yakushiji K., Yuasa S., Zvezdin K.A., Ando K., Fert A. // Nat. Comms. 2010. V. 1. P. 8. https://www.doi.org/10.1038/nphys619
- Ruotolo A., Cros V., Georges B., Dussaux A., Grollier J., Deranlot C., Guillemet R., Bouzehouane K., Fusil S., Fert A. // Nat. Nanotech. 2009. V. 4. P. 528. https://www.doi.org/10.1038/nnano.2009.143
- Schneider M., Hoffmann H., Zweck J. // Appl. Phys. Lett. 2001. V. 79. P. 3113. https://www.doi.org/10.1063/1.1410873
- Kimura T., Otani Y., Masaki H., Ishida T., Antos R., Shibata J. // Appl. Phys. Lett. 2007. V. 90. P. 132501. https://www.doi.org/10.1063/1.2716861
- Dumas R.K., Gredig T., Li C.-P., Schuller I.K., Liu K. // Phys. Rev. B. 2009. V. 80. P. 014416. https://www.doi.org/10.1103/PhysRevB.80.014416
- Udalov O., Sapozhnikov M., Karashtin E., Gribkov B., Gusev S., Skorohodov E., Rogov V., Klimov A., Fraer-man A. // Phys. Rev. B. 2012. V. 86. P. 094416. https://www.doi.org/10.1103/PhysRevB.86.094416
- Татарский Д.А., Миронов В.Л., Фраерман А.А. // ЖЭТФ. 2023. Т. 163. С. 366. https://www.doi.org/10.31857/S0044451023030082
- Rugar D., Mamin H.J., Guethner P., Lambert S.E., Stern J.E., McFadyen I., Yogi T. // J. Appl. Phys. 1990. V. 68. P. 1169. https://www.doi.org/10.1063/1.346713
- Thiaville A., Miltat J., Garcia J.M. Magnetic Microsco-py of Nanostructures. Berlin: Springer Verlag, 2005.
- Миронов В.Л. Основы сканирующей зондовой микроскопии. М.: Техносфера, 2004.
- Schneider M., Hoffmann H., Zweck J. // Appl. Phys. Lett. 2000. V. 77. P. 2909. https://www.doi.org/10.1063/1.1320465
- McVitie S., Cushley M. // Ultramicroscopy. 2006. V. 106. P. 423. https://www.doi.org/10.1016/j.ultramic.2005.12.001
- Tatarskiy D.A., Gusev N.S., Gusev S.A. // Ultramic-roscopy. 2023. V. 253. P. 113822. https://www.doi.org/10.1016/j.ultramic.2023.113822.
- Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., van Waeyenberg B. // AIP Adv. 2014. V. 4. P. 107133. https://www.doi.org/10.1016/j.ultramic.2023.113822
补充文件
