Using of Machine Learning Capabilities to Predict Double Phosphate Structures for Biomedical Applications
- Autores: Kolomenskaya E.R.1, Butova V.V.1,2, Rusalev Y.V.1, Protsenko B.O.1, Soldatov A.V.1, Butakova M.A.1
-
Afiliações:
- Southern Federal University
- Institute of General and Inorganic Chemistry of the Bulgarian Academy of Sciences
- Edição: Nº 6 (2024)
- Páginas: 13-22
- Seção: Articles
- URL: https://archivog.com/1028-0960/article/view/664803
- DOI: https://doi.org/10.31857/S1028096024060025
- EDN: https://elibrary.ru/DVXNGF
- ID: 664803
Citar
Resumo
In the rapidly developing field of biomedical research, the search for new materials with improved properties is crucial to moving the entire field forward. Double phosphates have generated significant interest in a wide range of applications, ranging from drug delivery systems to catalysts for biomedical reactions, and the fields of biomedicine and tissue engineering are no exception. In this article, we propose a method for finding new double phosphate materials based on machine learning, screening and applying data from structural databases, and we use this methodology combined with chemical knowledge to propose several promising materials for bone engineering. For the selected candidates, we develop a solid-phase synthesis procedure and apply physical characteristics to confirm the results. In addition, the role of microstructure, i.e. The porosity of frameworks based on these materials is discussed from a biomedical point of view, and several synthetic ways to adjust this parameter are proposed and investigated.
Palavras-chave
Sobre autores
E. Kolomenskaya
Southern Federal University
Autor responsável pela correspondência
Email: kolomenskaya@sfedu.ru
Rússia, Rostov-on-Don
V. Butova
Southern Federal University; Institute of General and Inorganic Chemistry of the Bulgarian Academy of Sciences
Email: kolomenskaya@sfedu.ru
Rússia, Rostov-on-Don; Sofia, Bulgaria
Yu. Rusalev
Southern Federal University
Email: kolomenskaya@sfedu.ru
Rússia, Rostov-on-Don
B. Protsenko
Southern Federal University
Email: kolomenskaya@sfedu.ru
Rússia, Rostov-on-Don
A. Soldatov
Southern Federal University
Email: kolomenskaya@sfedu.ru
Rússia, Rostov-on-Don
M. Butakova
Southern Federal University
Email: kolomenskaya@sfedu.ru
Rússia, Rostov-on-Don
Bibliografia
- Bregiroux D., Popa K., Wallez G. // J. Solid State Chem. 2015. V. 230. P. 26. https://www.doi.org/10.1016/j.jssc.2015.06.010
- Tudorache F., Popa K., Mitoseriu L., Lupu N., Bregiroux D., Wallez G. // J. Alloys Compd. 2011. V. 509. P. 9127.
- Etude de la dissolution de britholites et de solutions solides monazite / brabantite dop´ees avec des actinides. / Kerdaniel E.D.F.d., Universit´e Paris Sud, 2007.
- Popa K., Wallez G., Bregiroux D., Loiseau P. // J. Solid State Chem. 2011. V. 184. Iss. 10. P. 2629. https://www.doi.org/10.1016/j.jssc.2011.07.037
- Tabuteau A., Pagès M., Livet J., Musikas C. // J. Mater. Sci. Lett. 1988. V. 7. № 12. P. 1315. https://www.doi.org/10.1007/BF00719969
- Popa K., Wallez G., Raison P.E., Bregiroux D., Apostolidis Ch., Lindqvist-Reis P., Konings R.J.M. // Inorg. Chem. 2010. V. 49. № 15. P. 6904. https://www.doi.org/10.1021/ic100376u
- Wallez G., Bregiroux D., Popa K., Raison P.E., Apostolidis Ch., Lindqvist-Reis P., Konings R.J.M., Popa A.F. // Europ. J. Inorg. Chem. 2010. V. 2011. Iss. 1. P. 110. https://www.doi.org/10.1002/ejic.201000777
- Zhang Z.-J., Chen H.-H., Yang X.-X., Zhao J.-T., Zhang G.-B., Shi Ch.-Sh. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 105503. https://www.doi.org/10.1088/0022-3727/41/10/105503
- Ganose A.M., Jain A. // MRS Comm. 2019. V. 9. № 3. P. 874. https://www.doi.org/10.1557/mrc.2019.94
- Pies W., Weiss A. References for Vol. III/7. // Landolt-Börnstein - Group III Condensed Matter 7G. / Ed. Hellwege K.-H., Hellwege A.M. SpringerMaterials, 1971–1972. P. 425. https://www.doi.org/10.1007/10201585_20
- Morin E., Wallez G., Jaulmes S., Couturier J.C., Quarton M. // J. Solid State Chem. 1998. V. 137. Iss. 2. P. 283. https://www.doi.org/10.1006/jssc.1997.7735
- Popa K., Konings R. J. M., Bouëxière D., Popa A.F., Geisler T. // Adv. Sci. Technol. 2006. V. 45. P. 2012. https://www.doi.org/10.4028/www.scientific.net/AST.45.2012
- Huang Y., Cao Y., Jiang Ch., Shi L., Tao Y., Seo H.J. // Jpn. J. Appl. Phys. 2008. V. 47. P. 6364. https://www.doi.org/10.1143/jjap.47.6364
- Popa K., Konings R. J. M., Beneš O., Geisler T., Popa A.F. // Thermochimica Acta. 2006. V. 451. № 1–2. P. 1. https://www.doi.org/10.1016/j.tca.2006.08.011
- Larsson S., Fazzalari N.L. // Archives of Orthopaedic and Trauma Surgery. 2014. V. 134. № 2. P. 291. https://www.doi.org/10.1007/s00402-012-1558-8
- Marie P.J. // Bone. 2007. V. 40. № 5. P. 5. https://www.doi.org/10.1016/j.bone.2007.02.003
- Querido W., Rossi A.L., Farina M. // Micron. 2016. V. 80. № P. 122. https://www.doi.org/10.1016/j.micron.2015.10.006
- Doublier A., Farlay D., Khebbab M.T., Jaurand X., Meunier P.J., Boivin G. // Europ. J. Endocrinology. 2011. V. 165. № 3. P. 469. https://www.doi.org/10.1530/EJE-11-0415
- Baron R., Tsouderos Y. // Europ. J. Pharmacology. 2002. V. 450. № 1. P. 11. https://www.doi.org/10.1016/s0014-2999(02)02040-x
- Rybchyn M.S., Slater M., Conigrave A.D., Mason R.S. // J. Bio. Chem. 2011. V. 286. № 27. P. 23771. https://www.doi.org/10.1074/jbc.M111.251116
- Bellefqih H., Fakhreddine R., Tigha R., Aatiq A. // Mediterranean J. Chem. 2020. V. 10. № 8. P. https://www.doi.org/10.13171/mjc10802108201448hb
- Shepherd J.H., Best S.M. // JOM. 2011. V. 63. № 4. P. 83. https://www.doi.org/10.1007/s11837-011-0063-9
- Hench L.L., Polak J.M. // Science. 2002. V. 295. № 5557. P. 1014. https://www.doi.org/10.1126/science.1067404
- Amin S., Achenbach S.J., Atkinson E.J., Khosla S., Melton L.J. III // J. Bone Mineral Res. 2014. V. 29. № 3. P. 581. https://www.doi.org/10.1002/jbmr.2072
- McCabe G.P., Badylak S.F. // Biomaterials. 2009. V. 30. Iss. 8. P. 1482. https://www.doi.org/10.1016/j.biomaterials.2008.11.040
- Hutmacher D.W. // Biomaterials. 2000. V. 21. Iss. 24. P. 2529. https://www.doi.org/10.1016/s0142-9612(00)00121-6
- Kokubo T., Kim H.M., Kawashita M. // Biomaterials. 2003. V. 24. Iss. 13. P. 2161. https://www.doi.org/10.1016/s0142-9612(03)00044-9
- Porter J.R., Ruckh T.T., Popat K.C. // Biotechnol. Prog. 2009. V. 25. № 6. P. 1539. https://www.doi.org/10.1002/btpr.246
- Rho J.Y., Kuhn-Spearing L., Zioupos P. // Med. Eng. Phys. 1998. V. 20. № 2. P. 92. https://www.doi.org/10.1016/s1350-4533(98)00007-1
- Gao C., Deng Y., Feng P., Mao Zh., Li P., Yang B., Deng J., Cao Y., Shuai C., Peng Sh. // Int. J. Mol. Sci. 2014. V. 15. Iss. 3. P. 4714. https://www.doi.org/10.3390/ijms15034714
- Liu F.-H.// J. Sol-Gel Sci. Technol. 2012. V. 64. № 3. P. 704. https://www.doi.org/10.1007/s10971-012-2905-5
- Preethi Soundarya S., Haritha Menon A., Viji Chandran S. и др.// Int J Biol Macromol. 2018. V. 119. № P. 1228. https://www.doi.org/10.1016/j.ijbiomac.2018.08.056
- Seok J. M., Rajangam T., Jeong J. E., Selvamurugan N. // J. Mater. Chem. B. 2020. V. 8. P. 951. https://www.doi.org/10.1039/c9tb02360g
- Zadpoor A.A. // Biomater. Sci. 2015. V. 3. № 2. P. 231. https://www.doi.org/10.1039/c4bm00291a
- Chen X., Fan H., Deng X., Wu L., Yi T., Gu L., Zhou Ch., Fan Y., Zhang X. // Nanomaterials. 2018. V. 8. Iss. 11. https://www.doi.org/10.3390/nano8110960
- Javadzadeh Y., Hamedeyazdan S. Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease. // Trends in Helicobacter pylori Infection. / Ed. Roesler B.M. InTech, 2014. https://www.doi.org/10.5772/57353
- Mabrouk M., El-Bassyouni T.G., Beherei H., Kenawy S.H. Inorganic additives to augment the mechanical properties of 3D-printed systems 4. // Advanced 3D-Printed Sys-tems and Nanosystems for Drug Delivery and Tissue Engineering. Elsevier Inc., 2020. P. 83.
- Tripathi G., Basu B. // Ceram. Int. 2012. V. 38. Iss. 1. P. 341. https://www.doi.org/10.1016/j.ceramint.2011.07.012
- Pramanik S., Agarwal A. K., Rai K. N., Garg A. // Ceram. Int. 2007. V. 33. Iss. 3. P. 419. https://www.doi.org/10.1016/j.ceramint.2005.10.025
- Merli G.J., Weitz H.H. Medical Management of the Surgical Patient. Elsevier Inc., 2008. 864 p.
- Hao Y.I. // Vox Sanguinis. 2009. V. 36. № 5. P. 313. https://www.doi.org/10.1111/j.1423-0410.1979.tb04441.x
- Jeong S., Jeon Y., Mun J., Jeong S.M., Liang H., Chung K., Yi P.-I., An B.-S., Seo S. // Chemosensors. 2023. V. 11. Iss. 1. P. 49. https://www.doi.org/10.3390/chemosensors11010049
- Lasky F.D., Li Z.M.C., Shaver D.D., Savory J., Savory M.G., Willey D.G., Mikolak B.J., Lantry Ch.L. // Clinical Biochemistry. 1985. V. 18. Iss. 5. P. 290. https://doi.org/10.1016/S0009-9120(85)80034-5
- Chen C., Ong S.P. // Nature Computational Science. 2022. V. 2. № 11. P. 718. https://www.doi.org/10.1038/s43588-022-00349-3
- Petříček V., Dušek M., Palatinus L. // Zeitschrift für Kristallographie. 2014. V. 229. № 5. P. 345. https://www.doi.org/10.1515/zkri-2014-1737
- Sing K.S.W. // Pure Appl. Chem. 1985. V. 57. № 4. P. 603. https://www.doi.org/10.1351/pac1985570-40603
Arquivos suplementares
