Using of Machine Learning Capabilities to Predict Double Phosphate Structures for Biomedical Applications

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the rapidly developing field of biomedical research, the search for new materials with improved properties is crucial to moving the entire field forward. Double phosphates have generated significant interest in a wide range of applications, ranging from drug delivery systems to catalysts for biomedical reactions, and the fields of biomedicine and tissue engineering are no exception. In this article, we propose a method for finding new double phosphate materials based on machine learning, screening and applying data from structural databases, and we use this methodology combined with chemical knowledge to propose several promising materials for bone engineering. For the selected candidates, we develop a solid-phase synthesis procedure and apply physical characteristics to confirm the results. In addition, the role of microstructure, i.e. The porosity of frameworks based on these materials is discussed from a biomedical point of view, and several synthetic ways to adjust this parameter are proposed and investigated.

Sobre autores

E. Kolomenskaya

Southern Federal University

Autor responsável pela correspondência
Email: kolomenskaya@sfedu.ru
Rússia, Rostov-on-Don

V. Butova

Southern Federal University; Institute of General and Inorganic Chemistry of the Bulgarian Academy of Sciences

Email: kolomenskaya@sfedu.ru
Rússia, Rostov-on-Don; Sofia, Bulgaria

Yu. Rusalev

Southern Federal University

Email: kolomenskaya@sfedu.ru
Rússia, Rostov-on-Don

B. Protsenko

Southern Federal University

Email: kolomenskaya@sfedu.ru
Rússia, Rostov-on-Don

A. Soldatov

Southern Federal University

Email: kolomenskaya@sfedu.ru
Rússia, Rostov-on-Don

M. Butakova

Southern Federal University

Email: kolomenskaya@sfedu.ru
Rússia, Rostov-on-Don

Bibliografia

  1. Bregiroux D., Popa K., Wallez G. // J. Solid State Chem. 2015. V. 230. P. 26. https://www.doi.org/10.1016/j.jssc.2015.06.010
  2. Tudorache F., Popa K., Mitoseriu L., Lupu N., Bregiroux D., Wallez G. // J. Alloys Compd. 2011. V. 509. P. 9127.
  3. Etude de la dissolution de britholites et de solutions solides monazite / brabantite dop´ees avec des actinides. / Kerdaniel E.D.F.d., Universit´e Paris Sud, 2007.
  4. Popa K., Wallez G., Bregiroux D., Loiseau P. // J. Solid State Chem. 2011. V. 184. Iss. 10. P. 2629. https://www.doi.org/10.1016/j.jssc.2011.07.037
  5. Tabuteau A., Pagès M., Livet J., Musikas C. // J. Mater. Sci. Lett. 1988. V. 7. № 12. P. 1315. https://www.doi.org/10.1007/BF00719969
  6. Popa K., Wallez G., Raison P.E., Bregiroux D., Apostolidis Ch., Lindqvist-Reis P., Konings R.J.M. // Inorg. Chem. 2010. V. 49. № 15. P. 6904. https://www.doi.org/10.1021/ic100376u
  7. Wallez G., Bregiroux D., Popa K., Raison P.E., Apostolidis Ch., Lindqvist-Reis P., Konings R.J.M., Popa A.F. // Europ. J. Inorg. Chem. 2010. V. 2011. Iss. 1. P. 110. https://www.doi.org/10.1002/ejic.201000777
  8. Zhang Z.-J., Chen H.-H., Yang X.-X., Zhao J.-T., Zhang G.-B., Shi Ch.-Sh. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 105503. https://www.doi.org/10.1088/0022-3727/41/10/105503
  9. Ganose A.M., Jain A. // MRS Comm. 2019. V. 9. № 3. P. 874. https://www.doi.org/10.1557/mrc.2019.94
  10. Pies W., Weiss A. References for Vol. III/7. // Landolt-Börnstein - Group III Condensed Matter 7G. / Ed. Hellwege K.-H., Hellwege A.M. SpringerMaterials, 1971–1972. P. 425. https://www.doi.org/10.1007/10201585_20
  11. Morin E., Wallez G., Jaulmes S., Couturier J.C., Quarton M. // J. Solid State Chem. 1998. V. 137. Iss. 2. P. 283. https://www.doi.org/10.1006/jssc.1997.7735
  12. Popa K., Konings R. J. M., Bouëxière D., Popa A.F., Geisler T. // Adv. Sci. Technol. 2006. V. 45. P. 2012. https://www.doi.org/10.4028/www.scientific.net/AST.45.2012
  13. Huang Y., Cao Y., Jiang Ch., Shi L., Tao Y., Seo H.J. // Jpn. J. Appl. Phys. 2008. V. 47. P. 6364. https://www.doi.org/10.1143/jjap.47.6364
  14. Popa K., Konings R. J. M., Beneš O., Geisler T., Popa A.F. // Thermochimica Acta. 2006. V. 451. № 1–2. P. 1. https://www.doi.org/10.1016/j.tca.2006.08.011
  15. Larsson S., Fazzalari N.L. // Archives of Orthopaedic and Trauma Surgery. 2014. V. 134. № 2. P. 291. https://www.doi.org/10.1007/s00402-012-1558-8
  16. Marie P.J. // Bone. 2007. V. 40. № 5. P. 5. https://www.doi.org/10.1016/j.bone.2007.02.003
  17. Querido W., Rossi A.L., Farina M. // Micron. 2016. V. 80. № P. 122. https://www.doi.org/10.1016/j.micron.2015.10.006
  18. Doublier A., Farlay D., Khebbab M.T., Jaurand X., Meunier P.J., Boivin G. // Europ. J. Endocrinology. 2011. V. 165. № 3. P. 469. https://www.doi.org/10.1530/EJE-11-0415
  19. Baron R., Tsouderos Y. // Europ. J. Pharmacology. 2002. V. 450. № 1. P. 11. https://www.doi.org/10.1016/s0014-2999(02)02040-x
  20. Rybchyn M.S., Slater M., Conigrave A.D., Mason R.S. // J. Bio. Chem. 2011. V. 286. № 27. P. 23771. https://www.doi.org/10.1074/jbc.M111.251116
  21. Bellefqih H., Fakhreddine R., Tigha R., Aatiq A. // Mediterranean J. Chem. 2020. V. 10. № 8. P. https://www.doi.org/10.13171/mjc10802108201448hb
  22. Shepherd J.H., Best S.M. // JOM. 2011. V. 63. № 4. P. 83. https://www.doi.org/10.1007/s11837-011-0063-9
  23. Hench L.L., Polak J.M. // Science. 2002. V. 295. № 5557. P. 1014. https://www.doi.org/10.1126/science.1067404
  24. Amin S., Achenbach S.J., Atkinson E.J., Khosla S., Melton L.J. III // J. Bone Mineral Res. 2014. V. 29. № 3. P. 581. https://www.doi.org/10.1002/jbmr.2072
  25. McCabe G.P., Badylak S.F. // Biomaterials. 2009. V. 30. Iss. 8. P. 1482. https://www.doi.org/10.1016/j.biomaterials.2008.11.040
  26. Hutmacher D.W. // Biomaterials. 2000. V. 21. Iss. 24. P. 2529. https://www.doi.org/10.1016/s0142-9612(00)00121-6
  27. Kokubo T., Kim H.M., Kawashita M. // Biomaterials. 2003. V. 24. Iss. 13. P. 2161. https://www.doi.org/10.1016/s0142-9612(03)00044-9
  28. Porter J.R., Ruckh T.T., Popat K.C. // Biotechnol. Prog. 2009. V. 25. № 6. P. 1539. https://www.doi.org/10.1002/btpr.246
  29. Rho J.Y., Kuhn-Spearing L., Zioupos P. // Med. Eng. Phys. 1998. V. 20. № 2. P. 92. https://www.doi.org/10.1016/s1350-4533(98)00007-1
  30. Gao C., Deng Y., Feng P., Mao Zh., Li P., Yang B., Deng J., Cao Y., Shuai C., Peng Sh. // Int. J. Mol. Sci. 2014. V. 15. Iss. 3. P. 4714. https://www.doi.org/10.3390/ijms15034714
  31. Liu F.-H.// J. Sol-Gel Sci. Technol. 2012. V. 64. № 3. P. 704. https://www.doi.org/10.1007/s10971-012-2905-5
  32. Preethi Soundarya S., Haritha Menon A., Viji Chandran S. и др.// Int J Biol Macromol. 2018. V. 119. № P. 1228. https://www.doi.org/10.1016/j.ijbiomac.2018.08.056
  33. Seok J. M., Rajangam T., Jeong J. E., Selvamurugan N. // J. Mater. Chem. B. 2020. V. 8. P. 951. https://www.doi.org/10.1039/c9tb02360g
  34. Zadpoor A.A. // Biomater. Sci. 2015. V. 3. № 2. P. 231. https://www.doi.org/10.1039/c4bm00291a
  35. Chen X., Fan H., Deng X., Wu L., Yi T., Gu L., Zhou Ch., Fan Y., Zhang X. // Nanomaterials. 2018. V. 8. Iss. 11. https://www.doi.org/10.3390/nano8110960
  36. Javadzadeh Y., Hamedeyazdan S. Floating Drug Delivery Systems for Eradication of Helicobacter pylori in Treatment of Peptic Ulcer Disease. // Trends in Helicobacter pylori Infection. / Ed. Roesler B.M. InTech, 2014. https://www.doi.org/10.5772/57353
  37. Mabrouk M., El-Bassyouni T.G., Beherei H., Kenawy S.H. Inorganic additives to augment the mechanical properties of 3D-printed systems 4. // Advanced 3D-Printed Sys-tems and Nanosystems for Drug Delivery and Tissue Engineering. Elsevier Inc., 2020. P. 83.
  38. Tripathi G., Basu B. // Ceram. Int. 2012. V. 38. Iss. 1. P. 341. https://www.doi.org/10.1016/j.ceramint.2011.07.012
  39. Pramanik S., Agarwal A. K., Rai K. N., Garg A. // Ceram. Int. 2007. V. 33. Iss. 3. P. 419. https://www.doi.org/10.1016/j.ceramint.2005.10.025
  40. Merli G.J., Weitz H.H. Medical Management of the Surgical Patient. Elsevier Inc., 2008. 864 p.
  41. Hao Y.I. // Vox Sanguinis. 2009. V. 36. № 5. P. 313. https://www.doi.org/10.1111/j.1423-0410.1979.tb04441.x
  42. Jeong S., Jeon Y., Mun J., Jeong S.M., Liang H., Chung K., Yi P.-I., An B.-S., Seo S. // Chemosensors. 2023. V. 11. Iss. 1. P. 49. https://www.doi.org/10.3390/chemosensors11010049
  43. Lasky F.D., Li Z.M.C., Shaver D.D., Savory J., Savory M.G., Willey D.G., Mikolak B.J., Lantry Ch.L. // Clinical Biochemistry. 1985. V. 18. Iss. 5. P. 290. https://doi.org/10.1016/S0009-9120(85)80034-5
  44. Chen C., Ong S.P. // Nature Computational Science. 2022. V. 2. № 11. P. 718. https://www.doi.org/10.1038/s43588-022-00349-3
  45. Petříček V., Dušek M., Palatinus L. // Zeitschrift für Kristallographie. 2014. V. 229. № 5. P. 345. https://www.doi.org/10.1515/zkri-2014-1737
  46. Sing K.S.W. // Pure Appl. Chem. 1985. V. 57. № 4. P. 603. https://www.doi.org/10.1351/pac1985570-40603

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024