Stability of the magnetic subsystem of 2D magnets from the method of the crystal orbital hamilton population

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The densities of electronic states in quasi-two-dimensional vanadium nitrides have been studied using density functional theory and the method of the crystal orbital Hamilton population. The contribution of various orbital pairs and their influence on the stability of the magnetic subsystem of these compounds has been analyzed using the crystal orbital Hamilton population (COHP) algorithm. The calculation results and their analysis suggest that the formation of long-range magnetic order plays a role in the structural stabilization of magnetic quasi-two-dimensional transition metal nitrides. Comparing –COHP curves for different vanadium nitrides shows that the nitrogen stoichiometry in VxNy compounds affects the electronic properties and the nature of the chemical bond during the transition to the ferromagnetic state. Calculation data and total energies prove the structure-stabilizing effect of long-range magnetic ordering in quasi-two-dimensional vanadium-nitrogen compounds.

About the authors

L. I. Kushchuk

Bauman Moscow State Technical University

Email: karec1@gmail.com
Russian Federation, Moscow

D. K. Veretimus

Bauman Moscow State Technical University

Email: karec1@gmail.com
Russian Federation, Moscow

P. V. Lega

Bauman Moscow State Technical University; Kotelnikov Institute of Radio Engineering and Electronics RAS; RUDN University

Email: karec1@gmail.com
Russian Federation, Moscow; Moscow; Moscow

A. Yu. Antonenkova

RUDN University

Email: karec1@gmail.com
Russian Federation, Moscow

A. I. Kartsev

Computing Center Far Eastern Branch RAS; Kotelnikov Institute of Radio Engineering and Electronics RAS; RUDN University

Author for correspondence.
Email: karec1@gmail.com
Russian Federation, Khabarovsk; Moscow; Moscow

References

  1. Mahapatra P.L., Tromer R., Pandey P. et al. // Small. 2022. V. 18. № 27. P. 2201667. https://doi.org/10.1002/smll.202201667
  2. Ghosh S.K., Mandal D. // 2D Nanomaterials for Energy Applications: Graphene and Beyond. Elsevier, 2020. P. 1. https://doi.org/10.1016/C2018-0-00152-8
  3. Cortie D.L., Causer G.L., Rule K.C. et al. // AdV. Funct. Mater. 2020. V. 30. № 18. P. 1901414. https://doi.org/10.1002/adfm.201901414
  4. Coronado E. // Nat. Rev. Mater. 2020. V. 5. P. 87. https://doi.org/10.1038/s41578-019-0146-8
  5. Pramanik A., Kumbhakar P., Negedu S.D., Tiwary C.S. // Opt. Lett. 2022. V. 47. № 19.P. 4965. https://opg.optica.org/ol/abstract.cfm?URI=ol-47- 19-4965
  6. Moradi Z., Vaezzadeh M., Saeidi M. // Phys. Chem. C. 2023. V. 127. № 25. P. 12243. https://doi.org/10.1021/acs.jpcc.3c01954
  7. Park J.G. // J. Phys.: Condens. Matter. 2016. V. 28. № 30. P. 301001. https://doi.org/10.1088/0953-8984/28/30/301001
  8. Negedu S.D., Karstev A., Palit M., Pandey P., Emmanuel O.F., Roy A.K., Das G.P., Ajayan M.P. Kumbhakar P., Tiwary C.S.// J. Phys. Chem. C. 2022. V. 126. № 30. P. 12545. https://doi.org/10.1021/acs.jpcc.2c02102
  9. Mazaev P.V., Koledov V.V., Shavrov V.G. et al. // J. Commun. Technol. Electron. 2016. V. 61. P. 630. https://doi.org/10.1134/S1064226916060176
  10. Lega P., Kuchin D.S., Koledov V.V., Sampath V., Zhikharev A.M., Shavrov V.G. // Mater. Sci. Forum. 2016. V. 845. P. 142. http://dx.doi.org/10.4028/www.scientific.net/MSF.845.142
  11. Giannozzi P., Andreussi O., Brumme T. et al. // J. Phys.: Condens. Matter. 2017. V. 29. № 46. P. 465901. https://doi.org/10.1088/1361-648X/aa8f79
  12. Sihi A., Pandey S.K. // Eur. Phys. J. B. 2020. V. 93. P. 9. https://doi.org/10.1140/epjb/e2019-100500-8
  13. Şaşıoğlu E., Friedrich C., Blügel S. // Phys. Rev. B. 2011. V. 83. № 12. P. 121101(R). https://doi.org/10.1103/PhysRevB.83.121101
  14. Kartsev A., Feya O.D., Bondarenko N., Kvashnin A.G. // Phys. Chem. Chem. Phys. 2019. V. 21. № 9. P. 5262. https://doi.org/10.1039/C8CP07165A
  15. Kartsev A., Malkovsky S., Chibisov A. // Nanomaterials. 2021. V. 11. № 11. P. 2967. https://doi.org/10.3390/nano11112967
  16. Prandini G., Marrazzo A., Castelli I.E., Mounet N., Marzari N. // npj Comput. Mater. 2018. V. 4. № 1. P. 72. https://doi.org/10.1038/s41524-018-0127-2
  17. Grimme S., Antony J., Ehrlich S., Krieg H. // J. Chem. Phys. 2010. V. 132. № 15. P. 154104. https://doi.org/10.1063/1.3382344
  18. Maintz S., Deringer V.L., Tchougréeff A.L., Dronskowski R. // J. Comput. Chem. 2016. V. 37. № 11. P. 1030. https://doi.org/10.1002/jcc.24300
  19. Landrum G.A., Dronskowski R. // Ang. Chem. Int. Ed. 2000. V. 39. № 9. P. 1560. https://doi.org/10.1002/(SICI)1521-3773 (20000502)39:9%3C1560::AID-ANIE1560%3E3.0. CO;2-T
  20. Сорокин А.А., Макогонов С.В., Королев С.П. // Научно-техническая информация. Сер. 1. Организация и методика информационной работы. 2017. № 12. С. 14.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences