Kinetics of Sodium Borohydride Hydrolysis in Comparison with Ammonia Borane Using Cobalt Catalysts
- Authors: Dyankova N.Y.1, Lapin N.V.1, Grinko V.V.1, Bezhok V.S.1, Vyatkin A.F.1
-
Affiliations:
- Institute for Problems of Technology of Microelectronics and High-Purity Materials, Russian Academy of Sciences
- Issue: No 8 (2024)
- Pages: 102-111
- Section: Articles
- URL: https://archivog.com/1028-0960/article/view/664768
- DOI: https://doi.org/10.31857/S1028096024080134
- EDN: https://elibrary.ru/EKYXEB
- ID: 664768
Cite item
Abstract
The kinetics of the sodium borohydride catalytic hydrolysis with cobalt catalysts Co3O4/ZnO, Co/ZnO, Co3O4/zeolite, Co/zeolite, Co(OH)2, Co3O4, Co–B was studied and the kinetic characteristics of the process were compared with the same characteristics during the catalytic hydrolysis of ammonia borane. The concentrations of sodium borohydride and NaOH in aqueous solution in all cases were 0.064 and 0.06 M, respectively. The apparent activation energy and the rate of hydrogen evolution during the sodium borohydride hydrolysis in the temperature range 35–80°C were determined in each case. Kinetic data were processed using zero-order, first-order, and Langmuir–Hinshelwood reaction models. The apparent activation energies during the sodium borohydride hydrolysis ranged from 37.0 for Co3O4 to 72.6 kJ/mol for Co3O4/ZnO. These values exceeded similar values for the ammonia borane hydrolysis, which were in the range 26.0–47.4 kJ/mol. A higher rate of hydrogen evolution was observed during the sodium borohydride hydrolysis compared to ammonia borane when using these catalysts, except for Co–B and Co/ZnO catalysts. The maximum rates of hydrogen evolution 3510 and 3140 mL H2 (g cat)–1 min–1 were observed when using Co(OH)2 and Co–B catalysts, respectively.
About the authors
N. Y. Dyankova
Institute for Problems of Technology of Microelectronics and High-Purity Materials, Russian Academy of Sciences
Email: grinko@iptm.ru
Russian Federation, Chernogolovka, Moscow Region, 142432
N. V. Lapin
Institute for Problems of Technology of Microelectronics and High-Purity Materials, Russian Academy of Sciences
Email: grinko@iptm.ru
Russian Federation, Chernogolovka, Moscow Region, 142432
V. V. Grinko
Institute for Problems of Technology of Microelectronics and High-Purity Materials, Russian Academy of Sciences
Author for correspondence.
Email: grinko@iptm.ru
Russian Federation, Chernogolovka, Moscow Region, 142432
V. S. Bezhok
Institute for Problems of Technology of Microelectronics and High-Purity Materials, Russian Academy of Sciences
Email: grinko@iptm.ru
Russian Federation, Chernogolovka, Moscow Region, 142432
A. F. Vyatkin
Institute for Problems of Technology of Microelectronics and High-Purity Materials, Russian Academy of Sciences
Email: grinko@iptm.ru
Russian Federation, Chernogolovka, Moscow Region, 142432
References
- Singh R. // Int. J. Hydrogen Energy. 2022. V. 47. № 62. P. 26549. https://doi.org/10.1016/j.ijhydene.2021.10.022
- Netskina O.V., Tayban E.S., Prosvirin I.P., Komova O.V., Simagina V.I. // Renew. Energy. 2020. V. 151. P. 278. https://doi.org/10.1016/j.renene.2019.11.031
- Dragan M. // Catalysts. 2022. V. 12. № 4. P. 356. https://doi.org/10.3390/catal12040356
- Abdelhamid H.N. // Int. J. Hydrogen Energy. 2021. V. 46. № 1. P. 726. https://doi.org/10.1016/j.ijhydene.2020.09.186
- Liu M., Zhou L., Luo X., Wan C., Xu L. // Catalysts. 2020. V. 10. № 7. P. 788. https://doi.org/10.3390/catal10070788
- Netskina O.V., Kochubey D.I., Prosvirin I.P., Malykhin S.E., Komova O.V., Kanazhevskiy V.V., Chukalkin Yu.G., Bobrovskii V.I., Kellerman D.G., Ishchenko A.V., Simagina V.I. // Mol. Catal. 2017. V. 441. P. 100. https://doi.org/10.1016/j.mcat.2017.08.008
- Lewandowski M., Bartoszewicz M., Jaroszewska K., Djéga-Mariadassou G. // J. Ind. Eng. Chem. 2022. V. 116. P. 75. https://doi.org/10.1016/j.jiec.2022.09.031
- Patel N., Miotello A. // Int. J. Hydrogen Energy. 2015. V. 40. № 3. P. 1429. https://doi.org/10.1016/j.ijhydene.2014.11.052
- Demirci U.B. // Int. J. Hydrogen Energy. 2023. V. 48. № 76. P. 29682. https://doi.org/10.1016/j.ijhydene.2023.04.176
- Kaya C., Özdemir J.H., Elçiçek H., Özdemir O.K., Kökkülünk G., Ünlügençoğlu K. // Int. J. Hydrogen Energy. 2024. V. 51. P. 489. https://doi.org/10.1016/j.ijhydene.2023.07.054
- Wang X., Liao J., Li H., Wang H., Wang R., Pollet B.G., Ji S. // Int. J. Hydrogen Energy. 2018. V. 43. № 37. P. 17543. https://doi.org/10.1016/j.ijhydene.2018.07.147
- Netskina O.V., Kellerman D.G., Ishchenko A.V., Komova O.V., Simagina V.I. // Colloids Surfaces. A. 2018. V. 537. P. 485. https://doi.org/10.1016/j.colsurfa.2017.10.052
- Shu H., Lu L., Zhu S., Liu M., Zhu Y., Ni J., Ruan Z., Liu Y. // Catal. Commun. 2019. V. 118. P. 30. https://doi.org/10.1016/j.catcom.2018.09.012
- Filiz B.C., Figen A.K. // Int. J. Hydrogen Energy. 2019. V. 44. № 20. P. 9883. https://doi.org/10.1016/j.ijhydene.2019.02.111
- Alpaydin C.Y., Gulbay S.K., Colpan C.O. // Int. J. Hydrogen Energy. 2020. V. 45. № 5. P. 3414. https://doi.org/10.1016/j.ijhydene.2019.02.181
- Wu H., Cheng Y., Fan Y., Lu X., Li L., Liu B., Li B., Lu S. // Int. J. Hydrogen Energy. 2020. V. 45. № 55. P. 30325. https://doi.org/10.1016/j.ijhydene.2020.08.131
- Li F., Li J., Chen L., Dong Y., Xie P., Li Q. // Int. J. Hydrogen Energy. 2020. V. 45. № 56. P. 32145. https://doi.org/10.1016/j.ijhydene.2020.08.137
- Simagina V.I., Ozerova A.M., Komova O.V., Netskina O.V. // Catalysts. 2021. V. 11. № 2. P. 268. https://doi.org/10.3390/catal11020268
- Khan Z., AL-Thabaiti Sh. Ah. // J. Saudi Chem. Soc. 2021. V. 25. № 6. P. 101258. https://doi.org/10.3390/catal11020268
- Huang W., Xu F., Liu X. // Int. J. Hydrogen Energy. 2021. V. 46. № 50. P. 25376. https://doi.org/10.1016/j.ijhydene.2021.05.083
- Shen JL., Chen WF, Lv G., Yang ZH., Yan JY., Liu X., Dai ZX. // Int. J. Hydrogen Energy. 2021. V. 46. № 1. P. 796. https://doi.org/10.1016/j.ijhydene.2020.09.153
- Netskina O.V., Tayban E.S., Rogov V.A., Ozerova A.M., Mukha S.A., Simagina V.I., Komova O.V. // Int. J. Hydrogen Energy. 2021. V. 46. № 7. P. 5459. https://doi.org/10.1016/j.ijhydene.2020.11.078
- Narasimharao K., Abu-Zied B.M., Alfaifi S.Y. // Int. J. Hydrogen Energy. 2021. V. 46. № 9. P. 6404. https://doi.org/10.1016/j.ijhydene.2020.11.112
- Abdelhamid H.N. // J. Solid State Chem. 2021. V. 297. P. 122034. https://doi.org/10.1016/j.jssc.2021.122034
- Paksoy A., Kurtoglu S.F., Dizaji A. Kh., Altıntas Z., Khoshsima S., Uzun A., Balci O. // Int. J. Hydrogen Energy. 2021. V. 46. № 11. P. 7974. https://doi.org/10.1016/j.ijhydene.2020.12.017
- Шабуня С.И., Минкина В.Г., Калинин В.И., Санкир Н.Д., Алтаф С.Т. // Кинетика и катализ. 2021. Т. 62. № 3. С. 305. https://doi.org/10.31857/S0453881121030084
- Li R., Zhang F.M., Zhang J.P., Dong H. // Int. J. Hydrogen Energy. 2022. V. 47. № 8. P. 5260. https://doi.org/10.1016/j.ijhydene.2021.11.143
- Pour M.T.M., Paydar M.H. // Int. J. Hydrogen Energy. 2022. V. 47. № 86. P. 36372. https://doi.org/10.1016/j.ijhydene.2022.08.217
- Ugale A.D., Ghodke N.P., Kang G-S., Nam K-B., Bhoraskar S.V., Mathe V.L., Yoo J.B. // Int. J. Hydrogen Energy. 2022. V. 47. № 1. P. 16. https://doi.org/10.1016/j.ijhydene.2021.09.262
- Mirshafiee F., Rezaei M. // Int. J. Hydrogen Energy. 2023. V. 48. № 83. P. 32356. https://doi.org/10.1016/j.ijhydene.2023.04.337
- Zou A., Lin L., Zhou L., Kang Z., Cao L., Han Q. // J. Fuel Chem. Technol. 2023. V. 51. № 7. P. 909. https://doi.org/10.1016/S1872-5813(23)60347-0
- Altinsoy M., Ceyhan A.A. // Int. J. Hydrogen Energy. 2023. V. 48. № 72. P. 28018. https://doi.org/10.1016/j.ijhydene.2023.04.047
- Xia Y., Pei Y., Wang Y., Li F., Li Q. // Fuel. 2023. V. 331. № 1. P. 125733. https://doi.org/10.1016/j.fuel.2022.125733
- Filiz B.C., Fi A.K. // Kinetics Catal. 2019. V. 60. № 1. P. 37. https://doi.org/10.1134/S0023158419010075
- Xu Y., Wu C., Chen Y., Huang Z., Luo L., Wu H. // J. Power Sources. 2014. V. 261. P. 7. https://doi.org/10.1016/j.jpowsour.2014.03.038
- Lim D., Ozkan G., Ozkan G. // Int. J. Hydrogen Energy. 2022. V. 47. № 5. P. 3396. https://doi.org/10.1016/j.ijhydene.2021.03.039
- Dyankova N. Ya., Lapin N.V., Grinko V.V., Vyatkin A.F. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2023. V. 17. № 5. P. 1001. https://doi.org/10.1134/S102745102305004X
Supplementary files
