Kinetics of Sodium Borohydride Hydrolysis in Comparison with Ammonia Borane Using Cobalt Catalysts

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The kinetics of the sodium borohydride catalytic hydrolysis with cobalt catalysts Co3O4/ZnO, Co/ZnO, Co3O4/zeolite, Co/zeolite, Co(OH)2, Co3O4, Co–B was studied and the kinetic characteristics of the process were compared with the same characteristics during the catalytic hydrolysis of ammonia borane. The concentrations of sodium borohydride and NaOH in aqueous solution in all cases were 0.064 and 0.06 M, respectively. The apparent activation energy and the rate of hydrogen evolution during the sodium borohydride hydrolysis in the temperature range 35–80°C were determined in each case. Kinetic data were processed using zero-order, first-order, and Langmuir–Hinshelwood reaction models. The apparent activation energies during the sodium borohydride hydrolysis ranged from 37.0 for Co3O4 to 72.6 kJ/mol for Co3O4/ZnO. These values exceeded similar values for the ammonia borane hydrolysis, which were in the range 26.0–47.4 kJ/mol. A higher rate of hydrogen evolution was observed during the sodium borohydride hydrolysis compared to ammonia borane when using these catalysts, except for Co–B and Co/ZnO catalysts. The maximum rates of hydrogen evolution 3510 and 3140 mL H2 (g cat)–1 min–1 were observed when using Co(OH)2 and Co–B catalysts, respectively.

About the authors

N. Y. Dyankova

Institute for Problems of Technology of Microelectronics and High-Purity Materials, Russian Academy of Sciences

Email: grinko@iptm.ru
Russian Federation, Chernogolovka, Moscow Region, 142432

N. V. Lapin

Institute for Problems of Technology of Microelectronics and High-Purity Materials, Russian Academy of Sciences

Email: grinko@iptm.ru
Russian Federation, Chernogolovka, Moscow Region, 142432

V. V. Grinko

Institute for Problems of Technology of Microelectronics and High-Purity Materials, Russian Academy of Sciences

Author for correspondence.
Email: grinko@iptm.ru
Russian Federation, Chernogolovka, Moscow Region, 142432

V. S. Bezhok

Institute for Problems of Technology of Microelectronics and High-Purity Materials, Russian Academy of Sciences

Email: grinko@iptm.ru
Russian Federation, Chernogolovka, Moscow Region, 142432

A. F. Vyatkin

Institute for Problems of Technology of Microelectronics and High-Purity Materials, Russian Academy of Sciences

Email: grinko@iptm.ru
Russian Federation, Chernogolovka, Moscow Region, 142432

References

  1. Singh R. // Int. J. Hydrogen Energy. 2022. V. 47. № 62. P. 26549. https://doi.org/10.1016/j.ijhydene.2021.10.022
  2. Netskina O.V., Tayban E.S., Prosvirin I.P., Komova O.V., Simagina V.I. // Renew. Energy. 2020. V. 151. P. 278. https://doi.org/10.1016/j.renene.2019.11.031
  3. Dragan M. // Catalysts. 2022. V. 12. № 4. P. 356. https://doi.org/10.3390/catal12040356
  4. Abdelhamid H.N. // Int. J. Hydrogen Energy. 2021. V. 46. № 1. P. 726. https://doi.org/10.1016/j.ijhydene.2020.09.186
  5. Liu M., Zhou L., Luo X., Wan C., Xu L. // Catalysts. 2020. V. 10. № 7. P. 788. https://doi.org/10.3390/catal10070788
  6. Netskina O.V., Kochubey D.I., Prosvirin I.P., Malykhin S.E., Komova O.V., Kanazhevskiy V.V., Chukalkin Yu.G., Bobrovskii V.I., Kellerman D.G., Ishchenko A.V., Simagina V.I. // Mol. Catal. 2017. V. 441. P. 100. https://doi.org/10.1016/j.mcat.2017.08.008
  7. Lewandowski M., Bartoszewicz M., Jaroszewska K., Djéga-Mariadassou G. // J. Ind. Eng. Chem. 2022. V. 116. P. 75. https://doi.org/10.1016/j.jiec.2022.09.031
  8. Patel N., Miotello A. // Int. J. Hydrogen Energy. 2015. V. 40. № 3. P. 1429. https://doi.org/10.1016/j.ijhydene.2014.11.052
  9. Demirci U.B. // Int. J. Hydrogen Energy. 2023. V. 48. № 76. P. 29682. https://doi.org/10.1016/j.ijhydene.2023.04.176
  10. Kaya C., Özdemir J.H., Elçiçek H., Özdemir O.K., Kökkülünk G., Ünlügençoğlu K. // Int. J. Hydrogen Energy. 2024. V. 51. P. 489. https://doi.org/10.1016/j.ijhydene.2023.07.054
  11. Wang X., Liao J., Li H., Wang H., Wang R., Pollet B.G., Ji S. // Int. J. Hydrogen Energy. 2018. V. 43. № 37. P. 17543. https://doi.org/10.1016/j.ijhydene.2018.07.147
  12. Netskina O.V., Kellerman D.G., Ishchenko A.V., Komova O.V., Simagina V.I. // Colloids Surfaces. A. 2018. V. 537. P. 485. https://doi.org/10.1016/j.colsurfa.2017.10.052
  13. Shu H., Lu L., Zhu S., Liu M., Zhu Y., Ni J., Ruan Z., Liu Y. // Catal. Commun. 2019. V. 118. P. 30. https://doi.org/10.1016/j.catcom.2018.09.012
  14. Filiz B.C., Figen A.K. // Int. J. Hydrogen Energy. 2019. V. 44. № 20. P. 9883. https://doi.org/10.1016/j.ijhydene.2019.02.111
  15. Alpaydin C.Y., Gulbay S.K., Colpan C.O. // Int. J. Hydrogen Energy. 2020. V. 45. № 5. P. 3414. https://doi.org/10.1016/j.ijhydene.2019.02.181
  16. Wu H., Cheng Y., Fan Y., Lu X., Li L., Liu B., Li B., Lu S. // Int. J. Hydrogen Energy. 2020. V. 45. № 55. P. 30325. https://doi.org/10.1016/j.ijhydene.2020.08.131
  17. Li F., Li J., Chen L., Dong Y., Xie P., Li Q. // Int. J. Hydrogen Energy. 2020. V. 45. № 56. P. 32145. https://doi.org/10.1016/j.ijhydene.2020.08.137
  18. Simagina V.I., Ozerova A.M., Komova O.V., Netskina O.V. // Catalysts. 2021. V. 11. № 2. P. 268. https://doi.org/10.3390/catal11020268
  19. Khan Z., AL-Thabaiti Sh. Ah. // J. Saudi Chem. Soc. 2021. V. 25. № 6. P. 101258. https://doi.org/10.3390/catal11020268
  20. Huang W., Xu F., Liu X. // Int. J. Hydrogen Energy. 2021. V. 46. № 50. P. 25376. https://doi.org/10.1016/j.ijhydene.2021.05.083
  21. Shen JL., Chen WF, Lv G., Yang ZH., Yan JY., Liu X., Dai ZX. // Int. J. Hydrogen Energy. 2021. V. 46. № 1. P. 796. https://doi.org/10.1016/j.ijhydene.2020.09.153
  22. Netskina O.V., Tayban E.S., Rogov V.A., Ozerova A.M., Mukha S.A., Simagina V.I., Komova O.V. // Int. J. Hydrogen Energy. 2021. V. 46. № 7. P. 5459. https://doi.org/10.1016/j.ijhydene.2020.11.078
  23. Narasimharao K., Abu-Zied B.M., Alfaifi S.Y. // Int. J. Hydrogen Energy. 2021. V. 46. № 9. P. 6404. https://doi.org/10.1016/j.ijhydene.2020.11.112
  24. Abdelhamid H.N. // J. Solid State Chem. 2021. V. 297. P. 122034. https://doi.org/10.1016/j.jssc.2021.122034
  25. Paksoy A., Kurtoglu S.F., Dizaji A. Kh., Altıntas Z., Khoshsima S., Uzun A., Balci O. // Int. J. Hydrogen Energy. 2021. V. 46. № 11. P. 7974. https://doi.org/10.1016/j.ijhydene.2020.12.017
  26. Шабуня С.И., Минкина В.Г., Калинин В.И., Санкир Н.Д., Алтаф С.Т. // Кинетика и катализ. 2021. Т. 62. № 3. С. 305. https://doi.org/10.31857/S0453881121030084
  27. Li R., Zhang F.M., Zhang J.P., Dong H. // Int. J. Hydrogen Energy. 2022. V. 47. № 8. P. 5260. https://doi.org/10.1016/j.ijhydene.2021.11.143
  28. Pour M.T.M., Paydar M.H. // Int. J. Hydrogen Energy. 2022. V. 47. № 86. P. 36372. https://doi.org/10.1016/j.ijhydene.2022.08.217
  29. Ugale A.D., Ghodke N.P., Kang G-S., Nam K-B., Bhoraskar S.V., Mathe V.L., Yoo J.B. // Int. J. Hydrogen Energy. 2022. V. 47. № 1. P. 16. https://doi.org/10.1016/j.ijhydene.2021.09.262
  30. Mirshafiee F., Rezaei M. // Int. J. Hydrogen Energy. 2023. V. 48. № 83. P. 32356. https://doi.org/10.1016/j.ijhydene.2023.04.337
  31. Zou A., Lin L., Zhou L., Kang Z., Cao L., Han Q. // J. Fuel Chem. Technol. 2023. V. 51. № 7. P. 909. https://doi.org/10.1016/S1872-5813(23)60347-0
  32. Altinsoy M., Ceyhan A.A. // Int. J. Hydrogen Energy. 2023. V. 48. № 72. P. 28018. https://doi.org/10.1016/j.ijhydene.2023.04.047
  33. Xia Y., Pei Y., Wang Y., Li F., Li Q. // Fuel. 2023. V. 331. № 1. P. 125733. https://doi.org/10.1016/j.fuel.2022.125733
  34. Filiz B.C., Fi A.K. // Kinetics Catal. 2019. V. 60. № 1. P. 37. https://doi.org/10.1134/S0023158419010075
  35. Xu Y., Wu C., Chen Y., Huang Z., Luo L., Wu H. // J. Power Sources. 2014. V. 261. P. 7. https://doi.org/10.1016/j.jpowsour.2014.03.038
  36. Lim D., Ozkan G., Ozkan G. // Int. J. Hydrogen Energy. 2022. V. 47. № 5. P. 3396. https://doi.org/10.1016/j.ijhydene.2021.03.039
  37. Dyankova N. Ya., Lapin N.V., Grinko V.V., Vyatkin A.F. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2023. V. 17. № 5. P. 1001. https://doi.org/10.1134/S102745102305004X

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences