Organosilicon Polymeric Acetylene Derivatives: X-Ray Spectral Study and Quantum-Chemical Calculations
- Авторлар: Tatevosyan M.M.1, Vlasenko V.G.1, Shirayeva A.A.1, Zhukova T.N.2
-
Мекемелер:
- Southern Federal University, Research Institute of Physics
- Don State Technical University
- Шығарылым: № 8 (2024)
- Беттер: 94-101
- Бөлім: Articles
- URL: https://archivog.com/1028-0960/article/view/664767
- DOI: https://doi.org/10.31857/S1028096024080127
- EDN: https://elibrary.ru/ELCFQN
- ID: 664767
Дәйексөз келтіру
Аннотация
The atomic and electronic structure of two organosilicon polymers [–Ph2Si–(C≡C)2–]n (P1) and [–Ph2Si–(C≡C–C≡C)2–]m (P2) (where Ph — is phenyl group) of acetylene and diacetylene types by methods of density functional theory and X-ray emission spectroscopy. The interpretation of X-ray emission SiKβ1-spectra of these polymers was carried out based on an analysis of the distribution of partial electronic states obtained from quantum chemical calculations. Quantitative characteristics of the parameters of the chemical interaction of atoms, such as populations, natural charges, and electronic configurations in the studied polymers, were obtained based on the analysis of hybrid natural bond orbitals. The obtained values of the natural bond orbitals polarization coefficients indicate that the electron density is localized predominantly on carbon atoms. The electronic configurations for carbon atoms in different fragments differ significantly. For C atoms of ethynyl (diethynyl) fragments, they are close to linear σ-bond with sp1.03 (P1) and sp0.95 (P2) configurations, while for C atoms of phenyl fragments it is sp2.42, intermediate between sp2 and sp3 configurations. The natural charges on Si in both polymers are almost the same: +1.58e, +1.59e, while the natural charges on the carbon atoms of the diethynyl group decrease in comparison with the charge on the carbon atom of the ethynyl group from –0.42e to –0.36e.
Авторлар туралы
M. Tatevosyan
Southern Federal University, Research Institute of Physics
Email: v_vlasenko@rambler.ru
Ресей, Rostov-on-Don, 344090
V. Vlasenko
Southern Federal University, Research Institute of Physics
Хат алмасуға жауапты Автор.
Email: v_vlasenko@rambler.ru
Ресей, Rostov-on-Don, 344090
A. Shirayeva
Southern Federal University, Research Institute of Physics
Email: v_vlasenko@rambler.ru
Ресей, Rostov-on-Don, 344090
T. Zhukova
Don State Technical University
Email: v_vlasenko@rambler.ru
Ресей, Rostov-on-Don, 344002
Әдебиет тізімі
- Silicon-based, polymer science. // Advances in Chemistry. V. 224. / Ed. Zeigler J.M., Fearon F.W.G. Washington: American Chemical Society, 1989. https://www.doi.org/10.1021/ba-1990-0224
- Yarosh O.G., Voronkov M.G., Brodskaya E.I. // Russ. Chem. Rev. 1995. V. 64. P. 839. https://www.doi.org/10.1070/RC1995v064n09 ABEH000180
- Budy S.M., Son D.Y. // J. Inorg. Org. Polymers Mater. 2018. V. 28. P. 1673. https://doi.org/10.1007/s10904-018-0854-3
- Yang Z., Song Y., Zhang C., He J., Li X., Wang X., Wang N., Huang C., Li Y. Single atom dispersion of silicon as advanced versatile electrode material. Preprint. 2020. https://www.doi.org/10.21203/rs.3.rs-36360/v1
- Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Montgomery J.A., Vreven Jr., T., Kudin K.N., Burant J.C., Millam J.M., Iyengar S.S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G.A., et al // Gaussian 03, Revision A.1. Gaussian Inc., Pittsburgh PA. USA. 2003.
- Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
- Becke A.D. // J. Chem. Phys. 1993. V. 98. P. 5648. https://doi.org/10.1063/1.464913
- McLean A.D., Chandler G.S. // J. Chem. Phys. 1980. V. 72. P. 5639. https://doi.org/10.1063/1.438980
- Krishnan R., Binkley J.S., Seeger R., Pople J.A. // J. Chem. Phys. 1980. V. 72. P. 650. https://doi.org/10.1063/1.438955
- Даниленко Т.Н., Власенко В.Г., Татевосян М.М. // Изв. РАН.: Сер. физ. 2015. T. 79. C. 1576. https://doi.org/10.3103/S1062873815110064
- Татевосян М.М., Даниленко Т.Н., Власенко В.Г. // Журн. общ. хим. 2016. Т. 86. С. 1438. https://doi.org/10.1134/S107036321609005X
- Даниленко Т.Н., Татевосян М.М., Власенко В.Г. // Журн. общ. хим. 2018. Т. 88. С. 730. https://doi.org/10.1134/S1070363218080017
- Даниленко Т.Н., Татевосян М.М., Власенко В.Г. // Жур. структ. хим. 2020. Т. 61. С. 1063. https://doi.org/10.1134/S002247662007001X
- Allen F.H., Bellard S., Brice M.D., Cartwright B.A., Doubleday A, Higgs H., Hummelink T., Hummelink-Peters B.G., Kennard O., Motherwell W.D.S., Rodgers J.R., Watson D.G. // Acta Cryst. B. 1979. V. 35. P. 2331. https://doi.org/10.1107/S0567740879009249
- Chemcraft — graphical software for visualization of quantum chemistry computations. Version 1.8, build 648. (2023). http://www.chemcraftprog.com
- Даниленко Т.Н., Власенко В.Г., Татевосян М.М. // ФТТ. 2013. Т. 55. С. 2455.
- Horstmann J., Niemann M., Berthold K., Mix A., Neumann B., Stammler H.-G., Mitzel N.W. // Dalton Trans. 2017. V. 46. P. 1898. https://www.doi.org/10.1039/c6dt04608h
- Bokii N.G., Struchkov Yu.T., Luneva L.K., Sladkov A.M. // Russ. Chem. Bull. 197. V. 24. P. 270. https://doi.org/10.1007/BF00925768
- Reed A.E., Weinhold F. // J. Chem. Phys. 1983. V. 78. P. 4066. https://doi.org/10.1063/1.445134
- Reed A.E., Weinhold F. // J. Chem. Phys., 1985. V. 83. P. 1736. https://doi.org/10.1063/1.449360
- Reed A.E., Curtiss L.A., Weinhold F. // Chem. Rev. 1988. V. 88, P. 899. https://doi.org/10.1021/cr00088a005
- Даниленко Т.Н., Татевосян М.М., Власенко В.Г. // Жур. общ. хим. 2019. Т. 89. № 11. C. 1706. https://doi.org/10.1134/S0044460X19110106
Қосымша файлдар
