Relationship of Locally Inhomogeneous, Elastic and Magnetic Fields in Mn–Zn Ferrites
- Authors: Samoylenko Z.A.1, Ivakhnenko N.N.1,2, Pushenko E.I.1, Badekin M.Y.2,3, Sycheva V.Y.1
-
Affiliations:
- Donetsk Institute of Physics and Technology named after A. A. Galkin
- Russian State Agrarian University — Moscow Timiryazev Agricultural Academy
- Donetsk State University
- Issue: No 8 (2024)
- Pages: 50-60
- Section: Articles
- URL: https://archivog.com/1028-0960/article/view/664762
- DOI: https://doi.org/10.31857/S1028096024080072
- EDN: https://elibrary.ru/ELMLID
- ID: 664762
Cite item
Abstract
Using the methods of X-ray diffraction analysis, X-ray spectroscopy and theoretical physics, we studied the patterns of changes in the atomic, electronic and magnetic subsystems in ferrites of variable composition MnxZnyFezO4 associated with the formation of clusters differing in the composition of cations. Experimentally detected clusters, which appear in X-ray diffraction patterns as a halo, are characterized by a certain superposition of ion states, the magnetic moment of which depends not only on the spin of the electron, but also on its orbital moment and the spin of the nucleus. A phase transition was discovered in the mesoscopic cluster structure from manganese-containing clusters, caused by the interaction of trivalent manganese ions with oxygen ions, to clusters with a predominance of di- and trivalent manganese ions with oxygen ions. It is found that the clustered structure of manganese-zinc ferrites is responsible for the appearance of extreme magnetic properties; the maximum corresponds to a change in the dominant type of clusters. It is found that with an increase in mass density, a repopulation of energy states occurs as a decrease in the states of the low-energy electron group and an increase in the high-energy Fermi surface in the form of a saddle. It has been established that the peculiarities of condensation of the fundamental and soft modes of complexes (clusters) containing manganese and oxygen ions lead to changes in the physical parameters of the samples.
About the authors
Z. A. Samoylenko
Donetsk Institute of Physics and Technology named after A. A. Galkin
Email: yulduz19.77@mail.ru
Russian Federation, Donetsk, 283048
N. N. Ivakhnenko
Donetsk Institute of Physics and Technology named after A. A. Galkin; Russian State Agrarian University — Moscow Timiryazev Agricultural Academy
Author for correspondence.
Email: yulduz19.77@mail.ru
Russian Federation, Donetsk, 283048; Moscow, 127434
E. I. Pushenko
Donetsk Institute of Physics and Technology named after A. A. Galkin
Email: yulduz19.77@mail.ru
Russian Federation, Donetsk, 283048
M. Y. Badekin
Russian State Agrarian University — Moscow Timiryazev Agricultural Academy; Donetsk State University
Email: korund2002@list.ru
Russian Federation, Moscow, 127434; Donetsk, 283001
V. Y. Sycheva
Donetsk Institute of Physics and Technology named after A. A. Galkin
Email: yulduz19.77@mail.ru
Russian Federation, Donetsk, 283048
References
- Mansour S.F., Abdo M.A., El-Dek S.I. // J. Magn. Magn. Mater. 2017. V. 422. P. 105. http://doi.org./10.1016/j.jmmm.2016.07.049
- Mansour S.F., Hemeda O.M., Abdo M.A., Nada W.A. // J. Mol. Struct. 2018. V. 1152. P. 207. http://doi.org./10.1016/j.molstruc.2017.09.089
- Ji H.N., Lan Z.W., Xu Z.Y., Zhang H.W., Yu J.X., Li M.Q. // IEEE Trans. App. Supercond. 2014. V. 24. № 5. P. 1. http://doi.org./10.1109/TASC.2014.2340449
- Zhu N., Ji H., Shen C., Wu J., Niu J., Yang J., Farooq M.U., Li H., Niu X. // IEEE Trans. Appl. Supercond. 2019. V. 29. № 2. P. 1. http://doi.org./10.1109/TASC.2018.2882416
- Marracci M., Tellini B. // IEEE Trans. Magn. 2013. V. 49. № 6. P. 2865. http://doi.org./10.1109/TMAG.2012.2219877
- Ying Y., Xiong X., Wang N., Zheng J., Yu J., Li W., Qiao L., Cai W., Li J., Huang H., Che S. // J. Eur. Ceram. Soc. 2021. V. 41. № 12. P. 5924. http://doi.org./10.1016/j.jeurceramsoc.2021.05.013
- Ying Y., Hu L., Li Z., Zheng J., Yu J., Li W., Qiao L., Cai W., Li J., Bao D., Che S. // Process. Mater. (Basel). 2023. V. 16. № 9. P. 3454. http://doi.org./10.3390/ma16093454
- Szczygieł I., Winiarska K., Sobianowska-Turek A. // J. Therm. Anal. Calorim. 2018. V. 134. P. 51. http://doi.org./10.1007/s10973-018-7417-2
- Kaneva I.I., Kostishin V.G., Andreev V.G., Nikolaev A.N., Volkova E.I. // Modern Electron. Mater. 2015. V. 1. № 3. P. 76. http://doi.org./10.1016/j.moem.2015.11.003
- Jogi J.K., Singhal S.K., Joshi S.K., Jangir R. // Woodhead Publishing Series in Electronic and Optical Materials, Applications of Nanostructured Ferrites, Woodhead Publishing, 2023. P. 353. http://doi.org./10.1016/B978-0-443-18874-9.00009-6
- Praveena K., Chen H., Liu H., Sadhana K., Murthy S.R. // J. Magn. Magn. Mater. 2016. V. 420. P. 129. http://doi.org./10.1016/j.jmmm.2016.07.011
- Hussain A., Bai G., Huo H., Yi S., Wang X., Fan X., Yan M. // Ceram. Int. 2019. V 45. № 9. P. 12544. http://doi.org./10.1016/j.ceramint.2019.03.193
- Kogias G., Zaspalis V.T. // Ceram. Int. 2016. V. 42. № 6. P. 7639. http://doi.org./10.1016/j.ceramint.2016.01.176
- Sun B., Chen F., Yang W., Shen H., Xie D. // J. Magn. Magn. Mater. 2014. V. 349. P. 180. http://doi.org./10.1016/j.jmmm.2013.09.006
- Wang S.F., Hsu Y.F., Chen C.H. // J. Electroceram. 2014. V. 33. P. 172. http://doi.org./10.1007/s10832-014-9943-z
- Wei Z., Zheng P., Zheng L., Shao L., Hu J., Zhou J., Qin H. // J. Mater. Sci.: Mater Electron. 2016. V. 27. P. 6048. http://doi.org./10.1007/s10854-016-4529-y
- Zhong Y.U., Zhongwen L., Shengming C., Yueming S., Ke S. // Rare Metals. 2006. V. 25. № 6. P. 584. http://doi.org./10.1016/S1001-0521(07)60150-8
- Zapata A., Herrera G. // Ceram. Int. 2013. V. 39. № 7. P. 7853. http://doi.org./10.1016/j.ceramint.2013.03.046
- Hajalilou A., Mazlan S.A. // Appl. Phys. A. 2016. V. 122. P. 680. http://doi.org./10.1007/s00339-016-0217-2
- Hajalilou A., Hashim M., Ebrahimi-Kahrizsangi R., Mohamed kamari H., Sarami N. // Ceram. Int. 2014. V. 40. № 4. P. 5881. http://doi.org./10.1016/j.ceramint.2013.11.032
- Шемяков А.А., Котельникова А.М., Пащенко В.П. // Неорган. материалы. 1990. Т. 26. № 7. С. 402.
- Элиашберг Г.М. Физические свойства высокотемпературных сверхпроводников. М.: Мир, 1990. 505 с.
- Пащенко В.П., Нестеров А.М., Дригибко Я.Г., Потапов Г.А. // Порошковая металлургия. 1994. Т. 373. № 5-6. С. 89.
- Пащенко В.П., Даровских Е.Г., Потапов Г.А., Абрамов В.С., Топчиенк О.Б., Хапалюк Е.А. // Неорган. материалы. 1994. Т. 30. № 4. С. 547.
- Самойленко З.А., Ивахненко Н.Н., Пащенко В.П., Копаев О.В., Остафийчук Б.К., Гастюк И.М. // Журнал технической физики. 2002. Т. 72. Вып. 3. С. 83.
- Самойленко З.А., Абрамов В.С., Ивахненко Н.Н. // Физика твердого тела. 2005. Т. 47. Вып. 10. С. 1846.
- Варшавский М.Т., Пашенко В.П., Мень А.Н. // Неорган. материалы. 1999. Т. 26. № 7. С. 405.
- Смит Я., Вейн Х. Ферриты: физические свойства и практические применения. М: Изд-во иностр. лит., 1962. 504 с.
- Архаров В.И., Самойленко З.А., Пащенко В.П. // Неорган. материалы. 1991. Т. 27. № 10. С. 2184.
- Самойленко З.А., Ивахненко Н.Н., Пушенко Е.И., Пашинская Е.Г., Варюхин В.Н. // Физика твердого тела. 2016. Т. 58. Вып. 2. С. 217.
- Китайгородский А.И. Рентгеноструктурный анализ мелкокристаллических и аморфных тел. М.: Изд-во тех.-теор. лит., 1952. 588 с.
- Кривоглаз М.А. Диффузное рассеяние рентгеновских лучей и нейтронов на флуктуационных неоднородностях в неидеальных кристаллах Киев: Наукова думка, 1984. 288 с.
- Abramov V.S., Pashenko V.P., Khartsev S.I., Cherenkov O.P. // Funct. Mater. 1999. V. 6. № 1. P. 64.
- Абрамов В.И., Линник А.И. // Физика и техника высоких давлений. 1998. Т. 8. № 3. С. 90.
- Электронная структура и электронные свойства металлов и сплавов: Сб. науч. тр. / Ред. Барьяхтар В. Г. Киев: Наукова думка, 1988. 248 с.
Supplementary files
