Synthesis of hydride phases based on TiZrNbMoTa high-entropy alloy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A high-entropy TiZrNbMoTa alloy with a body-centered cubic lattice has been synthesized. The interaction of the alloy with hydrogen is accompanied by the formation of samples containing hydride phases with tetragonal and cubic lattice. Hydrogen desorption from the hydride at high temperature leads to the formation of fine metal powder of the original alloy with a cubic lattice. Samples of the alloy and hydride phases were analyzed by X-ray diffraction and electron microscopy.

Full Text

Restricted Access

About the authors

S. A. Lushnikov

Lomonosov Moscow State University

Author for correspondence.
Email: lushnikov@hydride.chem.msu.ru
Russian Federation, Moscow, 119991

T. V. Filippova

Lomonosov Moscow State University

Email: lushnikov@hydride.chem.msu.ru
Russian Federation, Moscow, 119991

References

  1. Miracle D.B., Senkov O.N. // Acta Materialia. 2017. V. 122. P. 448. https://doi/org/10.1016/j.actamat.2016.08.081
  2. Xu Z.Q., Ma Z.L., Wang M., Chen Y.W., Tan Y.D. // Mater. Sci. Engin. A. 2019. V. 755. № 7. P. 925. https://doi/org/10.1126/science.abe5323
  3. Son S., Lee D., Kwon H., Moon J., Park K.B., Kim A., Choi J., Jeong J-H., Cho S., Kim H.S. // J. Alloys. Compd. 2023. V. 935. Р. 168089. https://doi/org/10.1016/j.jallcom.2022.168089
  4. Yao K., Zhang Y., Liu L., Zhang X., Duan K., Liu B., Qi J., Zhao Z, Wu F. // J. Alloys. Compd. 2023. V. 947. Р. 169616. https://doi/org/10.1016/j.jallcom.2022.168089
  5. Yan X., Zhang Y. // Scripta Materialia. 2020. V. 178. P. 329. https://doi/org/10.1016/j.scriptamat.2019.11.059
  6. Shen H., Zhang J., Hu J., Zhang J., Mao Y., Xiao H., Zhou X., Zu X. // Nanomaterials. 2019. V. 9. P. 248. https://doi/org/10.3390/nano90202482
  7. Gorban V.F., Krapivka N.A., Firstova S.A., Kurilenkoa D.V. // Phys. Metals Metallogr. 2018. V. 119. № 5. P. 477. https://doi/org/10.1134/S0031918X18050046
  8. Yan X.H., Li J.S., Zhang W.R., Zhang Y. // Mater. Chem. Phys. 2018. V. 210. P. 12. https://doi/org/10.1016/j.matchemphys.2017.07.078
  9. Rempel A.A., Gel’chinskii B.R. // Izvestiya. Ferrous Metall. 2020. V. 63. № 3–4. P. 248. https://doi/org/10.17073/0368-0797-2020-3-4-248-253
  10. Kunce I., Polanski M., Bystrzycki J. // Int. J. Hydrogen Energy. 2013. V. 38. Iss. 27. P. 12180. https://doi/org/10.1016/j.ijhydene.2013.05.071
  11. Kucza W. // J. Alloys Compd. 2022. V. 894. Р. 162443. https://doi/org/10.1016/j.jallcom.2021.162443
  12. Zhang Y., Zhou Y.J., Lin J.P., Chen G.L., Liaw P.K. // Adv. Eng. Mater. 2008. V. 10. P. 534. https://doi/org/10.1002/adem.200700240
  13. Zhang L.C., Chen L.Yu. // Adv. Eng. Mater. 2019. V. 21. P. 1801215. https://doi/org/10.1002/adem.201801215
  14. Pineda F., Martínez C., Martin P., Aguilar C. // Rev. Adv. Mater. Sci. 2023. V. 62. P. 1. https://doi/org/10.1515/rams-2023-0150
  15. Zlotea C., Sow M.A., Ek G., Couzinie J.P., Perriere L., Guillot I., Bourgon J., Møller K.T., Jensen T.R., Akiba E. // J. Alloys. Compd. 2019. V. 775. P. 667. https://doi/org/10.1016/j.jallcom.2018.10.108
  16. Luo H., Li Z., Raabe D. // Sci Rep. 2017. V. 29. № 7 (1). P. 9892. https://doi/org/10.1038/s41598-017-10774-4
  17. Nygårda M.M., Sławinski W.A., Ekc G., Sørbya M.H. Sahlbergc M., Keend D.A., Hauback B.C. // Acta Materialia. 2020. V. 199. P. 540. https://doi/org/10.1016/j.actamat.2020.08.045
  18. Zlotea C., Sow M.A., Ek G., Couzinié J-P. et al. // J. Alloys Compd. 2019. V. 775. P. 667. https://doi/org/10.1016/j.jallcom.2018.10.108
  19. Somenkov V.A. // Ber. Bunsen. Phys. Chem. 1972. V. 76. P. 733. https://doi/org/10.1002/CHIN.197247005
  20. Соменков В.А., Шильштейн С.Ш. // Физика металлов и металловедение. 1988. Т. 65. № 1. С. 132.
  21. Соменков В.А., Шильштейн С.Ш. // Физика металлов и металловедение. 1998. Т. 86. № 3. С. 114.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffraction pattern of the TiZrNbMoTa sample processed by the Rietveld method: experimental (dots) and calculated profiles (solid line) (1); the difference between them (2); the dashes correspond to the Bragg positions.

Download (14KB)
3. Fig. 2. Diffraction pattern of a sample of the hydride phase based on TiZrNbMoTa with a hydrogen content of 0.9 atoms per lattice metal atom, processed by the Rietveld method: experimental (dots) and calculated profiles (solid line) (1); the difference between them (2). The dashes correspond to the Bragg positions: the upper row is the hydride phase with a cubic lattice, the lower row is with a tetragonal lattice.

Download (14KB)
4. Fig. 3. Transformation of the crystal lattice of the TiZrNbMoTa alloy from bcc (left) to tetragonal (right) during hydride formation.

Download (13KB)
5. Fig. 4. Diffraction pattern of a sample of the hydride phase based on TiZrNbMoTa after hydrogen desorption at a temperature of 673 K, processed by the Rietveld method: experimental (dots) and calculated profiles (solid line) (1); the difference between them (2); dashes correspond to Bragg positions.

Download (18KB)
6. Fig. 5. Diffraction pattern of a sample of the hydride phase based on TiZrNbMoTa after hydrogen desorption at a temperature of 773 K, processed by the Rietveld method: experimental (dots) and calculated profiles (upper line) (1); the difference between them (2); dashes correspond to Bragg positions.

Download (14KB)
7. Fig. 6. Diffraction pattern of a sample of the hydride phase based on TiZrNbMoTa after hydrogen desorption at a temperature of 973 K, processed by the Rietveld method. Shown are the experimental (dots) and calculated profiles (solid line) (1); the difference between them (2); the dashes correspond to the Bragg positions.

Download (13KB)

Copyright (c) 2024 Russian Academy of Sciences