Dependence of the silicon carbide radiation resistance on the irradiation temperature

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of high-temperature electron and proton irradiation on the characteristics of devices based on SiC has been studied. For the study, industrial 4H-SiC integrated Schottky diodes with an n-type base with a blocking voltage of 600, 1200 and 1700 V manufactured by CREE were used. Irradiation was carried out by electrons with an energy of 0.9 MeV and protons with an energy of 15 MeV. It was found that the radiation resistance of SiC Schottky diodes under high-temperature irradiation significantly exceeds the resistance of diodes under irradiation at room temperature. It is shown that this effect arises due to the annealing of compensating radiation defects under high-temperature irradiation. It is shown that this effect arises due to the annealing of compensating radiation defects under high-temperature irradiation. The parameters of radiation defects were determined by the method of non-stationary capacitance spectroscopy. Under high-temperature (“hot”) irradiation, the spectrum of radiation-induced defects introduced into SiC differed significantly from the spectrum of defects introduced at room temperature. The radiation resistance of silicon and silicon carbide is compared. The relatively small difference in the rate of removal of carriers in SiC and Si upon irradiation at room temperature is due to the fact that in SiC, in contrast to Si, there is practically no annealing of primary radiation defects during irradiation.

Full Text

Restricted Access

About the authors

A. A. Lebedev

Ioffe Institute RAS

Author for correspondence.
Email: shura.lebe@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021

V. V. Kozlovski

Peter the Great St. Petersburg Polytechnic University

Email: vkozlovski@spbstu.ru
Russian Federation, St. Petersburg, 195251

M. E. Levinshtein

Ioffe Institute RAS

Email: shura.lebe@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021

K. S. Davydovskaya

Ioffe Institute RAS

Email: shura.lebe@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021

R. A. Kuzmin

Ioffe Institute RAS

Email: shura.lebe@mail.ioffe.ru
Russian Federation, St. Petersburg, 194021

References

  1. Choyke W.J. // Inst. Phys.: Conf. Ser. 1977. V. 31. P. 58.
  2. Hallen A., Henry A., Pelligrino P., Swensson B.G., Aberg D. // Mater. Sci. Eng. B. 1999. V. 61–62. P. 378.
  3. Casse G. // J. Instrum. Methods Phys. Res. A. 2009. V. 598. P. 54.
  4. Metcalfe J., on behalf of the RD50 Collaboration // J. Nucl. Phys. B Proc. Suppl. 2011. V. 215. P. 151. https://www.doi.org/10.1016/j.nuclphysbps. 2011.03.162
  5. Swensson B.G., Hallen A., Linnarson M.K., Kuznetsov A.Yu., Janson M.S., Aberg D., Osterman J., Persson P.O.A., Hultman L., Storasta L., Carlsson F.H., Bergman J.P., Jagadish C., Morvan E. // Material Science Forum. 2001. V. 353–356. P. 349.
  6. Лебедев А.А., Козловский В.В. // ФТП. 2014. T. 48. C. 1329.
  7. Lang D.V. // J. Appl. Phys. 1974. V. 45. P. 3023.
  8. Kozlovski V.V., Strokan N.B., Ivanov A.M., Lebedev A.A., Emtsev V.V., Oganesyan G.A., Poloskin D.S. // Phys. B. 2009. V. 404. P. 4752.
  9. Kalinina E.V., Lebedev A.A., Bogdanova E.V., Lebedev A.A., Berenquier B., Ottaviani L., Violina G.N., Skuratov V.A. // Semiconductors. 2015. V. 4. P. 540.
  10. Hazdra P., Vobecky J. // Phys. Status Solidi. A. 2019. V. 216. P. 1900312. https://doi.org/10.1002/pssa.201900312.
  11. Castaldini A., Cavallini A., Rigutti L., Nava F. // Appl. Phys. Lett. 2004. V. 85. P. 3780.
  12. Kaneko H., Kimoto T. // Appl. Phys. Lett. 2011. V. 98. P. 262106. https://doi.org/10.1063/1.3604795
  13. Hazdra P., Popelka S. // IET Power Electron. 2019. V. 12. P. 3910. https://doi.org/iet-pel.2019.0049
  14. Vobecky J., Hazdra P., Popelka S., Sharma K.R. // IEEE Trans. Electron Dev. 2015. V. 62. P. 1964. https://doi.org/10.1109/TED.2015.2421503
  15. Castaldini A., Cavallini A., Rigutti L. // Semicond. Sci. Technol. 2006. V. 21. P. 724. https://doi.org/10.1088/0268-1242/21/6/002
  16. Bathen M.E., Lew C.T.-K., Woerle J., Dorfer C., Grossner U., Castelletto S., Johnson B.C. // J. Appl. Phys. 2022. V. 131. P. 140903. https://doi.org/10.1063/5.0077299
  17. Lebedev A.A. Radiation Effects in Silicon Carbide. / Proc. Mater. Res. Forum LLC, Millersville, USA, 2017. V. 6. ISSN 2471-8890; ISBN 978-1-945291-11-1
  18. Lebedev A.A., Kozlovski V.V., Davydovskaya K.S., Levinshtein M.E. // Materials. 2021. V. 14. P. 4976. https://www.doi.org/10.3390/ma14174976
  19. Corbett J.W., Bourgoin J.C. Defect Creation in Semiconductors // Point Defects in Solids, V. 2. Semiconductors and Molecular Crystals. / Ed. Crawford J.H., Slifkin L.M. New York, London: Plenum Press, 1975. P. 1.
  20. Claeys C., Simoen E. Radiation Effects in Advanced Semiconductor Materials and Devices. Berlin: Springer–Verlag, 2002. 401 p.
  21. Lindstrom J.L., Murin L.I., Hallberg T., Markevich V.P., Svensson B.G., Kleverman M., Hermansson J. // Nucl. Instrum. Methods Phys. Res. B. 2002. V. 186. Iss. 1–4. P. 121.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dependences of the concentration (Nd – Na) in integrated Schottky diodes with a blocking voltage of 1700 V on the electron irradiation dose at temperatures of 300 (1); 500 (2); 600 (3) and 800 K (4). The rates of charge carrier removal h under these conditions are, respectively, 0.15, 0.02, 0.0133 and 0.01185 cm–1.

Download (14KB)
3. Fig. 2. Direct current-voltage characteristics of integrated Schottky diodes with a breakdown voltage of 1700 V after electron irradiation with a dose of D = 6 × 1016 cm–2 at temperatures Ti of 300 (1); 600 (2) and 800 K (3). The inset shows the dependence of the base resistance ñ on the reciprocal temperature 1/Ti after irradiation with a dose of D = 1.3 × 1017 cm–2.

Download (14KB)
4. Fig. 3. Dependences of the concentration of uncompensated charge carriers in integrated Schottky diodes with a blocking voltage of 1700 V on the electron irradiation dose at temperatures of 300 (1); 600 (2); 700 K (3). The rates of removal of charge carriers η under these conditions are, respectively, 54, 13 and 9 cm–1.

Download (12KB)
5. Fig. 4. Direct current-voltage characteristics of integrated Schottky diodes with a breakdown voltage of 1700 V after irradiation with protons with an energy of 15 MeV at a dose of D = 1 × 1014 cm–2 at irradiation temperatures of Ti 300 (1); 600 (2) and 800 K (3).

Download (12KB)
6. Fig. 5. NSGU spectra of integrated Schottky diodes with a blocking voltage of 1700 V before irradiation (1) and after irradiation with electrons with an energy of 0.9 MeV at temperatures of 300 (1); 600 K (2) and doses D = 1 and 6 × 1016 cm–2, respectively.

Download (17KB)
7. Fig. 6. Schematic representation of annealing of radiation defects in silicon and silicon carbide. The vertical line shows the position of room temperature on the temperature axis.

Download (15KB)

Copyright (c) 2024 Russian Academy of Sciences