Fractal properties of the Nd100–xFex alloys surface in the fractal thermodynamics model
- 作者: Mikheev S.A.1, Semenova E.M.1, Pastushenkov Y.G.1, Tsvetkov V.P.1, Tsvetkov I.V.1
-
隶属关系:
- Tver State University
- 期: 编号 3 (2024)
- 页面: 105-112
- 栏目: Articles
- URL: https://archivog.com/1028-0960/article/view/664678
- DOI: https://doi.org/10.31857/S1028096024030157
- EDN: https://elibrary.ru/hdhpbd
- ID: 664678
如何引用文章
详细
The study of the fractal properties of the surface of Nd100–xFex alloys in a wide range of concentrations х (х = 20–90) was carried out in the framework of the fractal thermodynamics model. To this end, we performed an analysis of images obtained by (scanning electron?) microscopy of the surfaces of a series of Nd100–xFex alloys synthesized by induction melting. A high degree of proximity of the surface structure of all the studied samples, both before and after etching, to fractals is shown. The values of the parameter δ characterizing the relative deviation of the studied samples from the fractal are in the range of 0.017–0.029. Three-dimensional diagrams of the fractal parameters Sf , Tf , Ef , x and two-dimensional diagrams of the same parameters: Sf , Tf , Ef , x, reflecting the nature of the state of the surfaces of Nd100–xFex alloy samples before and after etching, are constructed. For all investigated samples of alloys, the values of the parameters of the fractal equations of state arecalculated. The correlation of the maximum value of the coercive force Hc = 4.8 kE with the values of fractal entropy Sf = 39.86, fractal temperature Tf = 529, and fractal dimension D = 2.6530 of the Nd100–xFex alloys at x = 20 has been established.
全文:

作者简介
S. Mikheev
Tver State University
Email: mancu@mail.ru
俄罗斯联邦, 170100, Tver
E. Semenova
Tver State University
Email: mancu@mail.ru
俄罗斯联邦, 170100, Tver
Yu. Pastushenkov
Tver State University
Email: mancu@mail.ru
俄罗斯联邦, 170100, Tver
V. Tsvetkov
Tver State University
Email: mancu@mail.ru
俄罗斯联邦, 170100, Tver
I. Tsvetkov
Tver State University
编辑信件的主要联系方式.
Email: mancu@mail.ru
俄罗斯联邦, 170100, Tver
参考
- Llamazares S., Calderon F., Bolzoni F., Leccabue F., Hua X.R., Nozieres J.P. // J. Magn. Magn. Mat. 1990. V. 86. P. 307.
- Karpenkov A.Y., Skokov K.P., Dunaeva G.G., Semeno-va E.M., Lyakhova M.B., Pastushenkov Yu.G. // J. Phys. D: Appl. Phys. 2022. V. 55. Iss. 45. P. 455002. https://doi.org/10.1088/1361-6463/ac90d2
- Zhdanova O.V., Lyakhova M.B., Pastushenkov Yu.G. // Phys. Metals Metallography. 2011. V. 112. Iss. 3. P. 224. https://doi.org/10.1134/S0031918X11030306
- Van Ende M.A., Jung I.H. // J. Alloys Compd. 2013. V. 548. P. 133. https://doi.org/10.1016/j.jallcom.2012.08.127
- Menushenkov V.P., Andersen S.J., Hoeier R. Electron-microscopy investigations of microstructure in Fe-Nd alloys // Magnetic Anisotropy and Coercivity in Rare-Earth Transition Metal Alloys. Proceedings. P. 97.
- Landgraf F.J.G., Schneider G.S., Villas-Boas V., Missell F.P. // J. Less Common Metals. 1990. V. 163. Iss. 1. P. 209. https://doi.org/10.1016/0022-5088(90)90101-O
- Kim D.-H., Cho Y.-Ch., Choe S.-B., Shin S.-Ch. // Appl. Phys. Lett. 2003. V. 82. P. 3698.
- Bathany C., Romancer M.L., Armstrong J.N., Chop- ra H.D. // Phys. Rev. B. 2010. V. 82. P. 184411. https://doi.org/10.1103/PhysRevB.82.184411
- Catalan G., Béa H., Fusil S., Bibes M., Paruch P., Barthélémy A., Scott J.F. // Phys. Rev. Lett. 2008. V. 100. P. 027602. https://doi.org/10.1103/PhysRevLett.100.027602
- Картузов В.В., Дмитришина Я.Ю. // Электронная обработка материалов. 2015. Т. 51. № 2. С. 31.
- Bucher J.P. // European J. Phys. 1991. V. 12. № 3.
- Lisovskii F.V., Lukashenko L.I., Mansvetova E.G. // JETP Lett. 2004. V. 79. P. 352. https://doi.org/10.1134/1.1765181
- Семенова Е.М., Иванов Д.В., Ляхова М.Б. и др. // Известия РАН: Сер. Физ. 2021. Т. 85. № 9. С. 1245.
- Mikheev S.A., Paramonova E.K., Tsvetkov V.P., Tsvet kov I.V. // Russ. J. Mathematical Phys. 2021. V. 28. P. 251.
- Tsvetkov V.P., Mikheyev S.A., Tsvetkov I.V. // Chaos, Solitons & Fractals. 2018. V.108. P. 71.
- Paramonova E., Kudinov A., Mikheev S., Tsvetkov V., Tsvetkov I. Fractal thermodynamics, big data and its 3D visualization // CEUR Workshop Proc. 2021. V. 3041. P. 38.
- Tsvetkov V.P., Mikheev S.A., Tsvetkov I.V., Derbov V.L., Gusev A.A., Vinitsky S.I. // Chaos, Solitons & Fractals. 2022. V. 161. P. 112301.
- Мейсурова А.Ф., Цветков В.П., Цветков И.В., Нотов А.А. // Вестник Тверского государственного университета. Серия: Биология и экология. 2022. № 1. Вып. 65. С. 180.
- Maslov V.P. // J. Math. Phys. 2016. V. 23. Iss. 2. P. 278.
- Gwyddion – Free SPM (AFM, SNOM/NSOM, STM, MFM) data analysis software (2021) Department of Nanometrology, Czech Metrology Institute. http://gwyddion.net
- Maple: эффективный инструмент для решения математических задач (2023) Waterloo Maple Inc., Canada. https://www.maplesoft.com/demo/streaming/Maple 15Russian.aspx
补充文件
