Determination of the Activation Energy of Defects in Ferroelectrics by the Method of Temperature Activation–Relaxation of the Dielectric Permittivity

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The article proposes a method of temperature activation–relaxation of the permittivity for determining the activation energy of defects in ferroelectrics using lead zirconate–titanate Pb(Zr,Ti)O3 samples as an example. This method is based on the analysis of relaxation of the permittivity after thermal annealing and the analysis of the temperature activation of the permittivity of the Pb(Zr,Ti)O3 ferroelectric. The equality of the activation energy corresponding to the process of migration of oxygen vacancies and the thermal energy of the decay of the domain structure was established, which was confirmed by studying the surface of the samples by scanning electron microscopy. When this temperature was reached, the surface of the domain walls was detached from oxygen vacancies, which are pinning centers. This manifested itself in photographs of the microstructure as a change in the ordering of the domains emerging on the surface of the sample, which led to an irreversible decrease in the permittivity of the sample. For the obtained activation energies, the physical process of domain wall motion activation is established, which is determined by their pinning on structural defects (oxygen vacancies). It is assumed that the irreversible decay of the domain structure occurs when the domain walls are displaced by distances exceeding the elementary lattice parameter of the ferroelectric. The proposed method can be part of a comprehensive study that includes electrophysical, microscopic and X-ray methods.

Texto integral

Acesso é fechado

Sobre autores

D. Kuzenko

Reaktivelectron Scientific Research Institute

Autor responsável pela correspondência
Email: danil.kuzenko.84@yandex.ru
Rússia, Donetsk

Bibliografia

  1. Джагупов Р.Г., Ерофеев А.А. Пьезокерамические элементы в приборостроении и автоматике. Л.: Машиностроение. Ленингр. отд-ние, 1986. 252 с.
  2. Бобцов А.А., Бойков В.И., Быстров С.В., Григорьев В.В., Карев П.В. Исполнительные устройства и системы для микроперемещений. СПб: Университет ИТМО, 2017. 34 с.
  3. Mikolajick T., Slesazeck S., Mulaosmanovic H., Park M.H., Fichtner S., Lomenzo P.D., Hoffmann M., Schroeder U. // J. Appl. Phys. 2021. V. 129. № 10. P. 100901. https://www.doi.org/10.1063/5.0037617
  4. Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. М.: Мир, 1981. 736 с.
  5. Alexander K. Tagantsev, L. Eric Cross, Jan Fousek Domains in Ferroic Crystals and Thin Films. N.Y.: Springer-Verlag, 2010. 821 p. https://www.doi.org/10.1007/978-1-4419-1417-0
  6. Сидоркин А.С. Доменная структура в сегнетоэлектриках и родственных материалах. М.: Физматлит, 2000. 240 с.
  7. Приседский В.В. Нестехиометрические сегнетоэлектрики АIIBIVO3. Донецк: Изд-во ‘‘Ноулидж’’ (донецкое отделение), 2011. 267 с.
  8. Смоленский Г.А. Сегнетоэлектрики и антисегнетоэлектрики. Л.: Наука. Ленинградское отделение, 1971. 476 с.
  9. Дубинин С.Ф., Лошкарев Н.Н., Теплоухов С.Г., Сухоруков Ю.П., Балбашов А.М., Архипов В.Е., Пархоменко В.Д. // ФТТ. 2005. Т. 414. № 7. С. 1236. https://journals.ioffe.ru/articles/viewPDF/3886
  10. Li W., Ma J., Chen K., Su D., Zhu J.S. // Europhys. Lett. 2005. V. 72. № 1. P. 131. https://www.doi.org/10.1209/epl/i2005-10193-0
  11. Xiao Y., Bhattacharya K. Interaction of oxygen vacancies with domain walls and its impact on fatigue in ferroelectric thin films. // Proc. SPIE. Smart Structures and Materials, San Diego, CA, United States. 2004. V. 5387. P. 354. https://www.doi.org/10.1117/12.539588
  12. Xu T., Shimada T., Araki Y., Wang J., Kitamura T. // Nano Lett. 2015. V. 16. № 1. P. 454. https://www.doi.org/10.1021/acs.nanolett.5b04113
  13. Paruch P., Kolton A.B., Hong X., Ahn C.H., Giamar- chi T. // Phys. Rev. B. 2012. V. 85. № 21. P. 214115 https://www.doi.org/10.1103/physrevb.85.214115
  14. Qi Tan, Xu Z., Jie-Fang Li // Appl. Phys. Lett. 1997. V. 71. P. 1062. https://www.doi.org/10.1063/1.119728
  15. Balke N., Ramesh R., Yu P. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 45. P. 39736. https://www.doi.org/10.1021/acsami.7b10747
  16. Zhang D., Sando D., Sharma P., Cheng X., Ji F., Govinden V., Weyland M., Nagarajan V., Seidel J. // Nat. Commun. 2020. V. 11. № 349. https://www.doi.org/10.1038/s41467-019-14250-7
  17. Samanta S., Sankaranarayanan V., Sethupathi K. // Vacuum. 2018. V. 156. № 456. https://www.doi.org/10.1016/j.vacuum.2018.08.015
  18. Hosun Lee, Youn Seon Kang, Sang-Jun Cho, Bo Xiao, Hadis Morkoç, Tae Dong Kang, Ghil Soo Lee, Jingbo Li, Su-Huai Wei, Snyder P.G., Evans J.T. // J. Appl. Phys. 2005. V. 98. P. 094108. https://www.doi.org/10.1063/1.2128043
  19. Lo V.C., Li K.T. // J. Mater. Sci. Mater. Electron. 2006. V. 18. № 5. P. 553. https://www.doi.org/10.1007/s10854-006-9070-y
  20. Татохин Е.А., Каданцев А.В., Бормонтов А.Е., Задорожний В.Г. // Физика и техника полупроводников. 2010. T. 44. №. 8. С. 1031. journals.ioffe.ru/articles/viewPDF/7187
  21. Kuzenko D.V., Ishchuk V.M., Bazhin A.I., Spiridonov N.A. Long-time aftereffects and relaxation in piezoelectric ceramics // Ferroelectrics. 2015. V. 474. P. 156. https://www.doi.org/10.1080/00150193.2015.997179
  22. Kuzenko D.V. // J. Adv. Dielectrics. 2022.V. 12. № 3. P. 2250010. https://www.doi.org/10.1142/S2010135X22500102
  23. Kuzenko D.V. // J. Adv. Dielectrics. 2021. V. 11. № 1. P. 2150006. https://www.doi.org/10.1142/S2010135X21500065
  24. Кузенко Д.В. // Вестник Донецкого национального университета. Серия А: Естественные науки. 2022. № 4. С. 15. donnu.ru/public/journals/files/Vestnik_DonNU_A_ 2022_N4.pdf

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of dielectric permittivity on temperature ε(T) (a) and logarithm of dielectric permittivity on inverse temperature lnε(1/T) (b) for Pb(Zr0.53Ti0.47)O3 samples; 1-4 - areas of the graph approximated by linear dependence

Baixar (101KB)
3. Fig. 2. Activation energies for temperature-activation processes in the segmentoelectric phase, corresponding to linearly approximated lnε(1/T) plots, and domain wall displacements (schematically) attached to VO2+ oxygen vacancies. DC - domain wall, P - polarisation, u - domain wall displacement, a - unit cell parameter

Baixar (209KB)
4. Fig. 3. Surface morphology of unpolarised (1), polarised (2) and annealed at 373 (3), 473 (4), 536 (5, corresponds to Td), 552 K (6, fully depolarised sample) after polarisation of Pb(Zr0.53Ti0.47)O3 sample obtained in the reflectance mode at room temperature

Baixar (60KB)
5. Fig. 4. Relaxation of dielectric constant after annealing of Pb(Zr0.53Ti0.47)O3 samples (a) and temperature dependence of dielectric constant relaxation rate (b). Td < TC - depolarisation temperature

Baixar (104KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024