Mechanoluminescence and Optically Stimulated Antistokes Luminescence of Composites Based on Epoxy Resin and Strontium Aluminate Phosphors SrAl2O4:Eu2+,Dy3+ and Sr4Al14O25:Eu2+, Dy3+

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Composite mechanoluminescent materials (composites) based on epoxy resin transparent in the visible range of spectrum and fine-dispersed powders of mechanoluminescent phosphors SrAl2O4:Eu2+, Dy3+ and Sr4Al14O25:Eu2+, Dy3+ were obtained. The mechanoluminescence and photoluminescence spectra of composites under the combined influence of short-wave (λ = 405 nm) and long-wave (λ = 1.06 µm) laser radiation were studied. The attenuation of optically stimulated antistokes luminescence of the composite under the influence of a sequence of pulses of longwave laser radiation was investigated. The composite was pre-irradiated with shortwave laser radiation. The obtained composite was used to visualize heat propagation and thermal deformations in metal plates arising under the action of powerful laser pulses and distribution of deformations under mechanical impact. For this purpose, a thin layer of the composite was applied to the surface of the materials under study. The composite had good adhesion to the surface of the materials and a high yield of mechanoluminescence, which allowed to visualize the distribution of temperature and surface deformations with a good spatial and temporal resolution.

Texto integral

Acesso é fechado

Sobre autores

А. Banishev

Kurchatov Institute

Autor responsável pela correspondência
Email: banishev@mail.ru
Rússia, Moscow

Bibliografia

  1. Takahashi D., Hubner J.P. // Exp Mech. 2010. V. 50. № 3. P. 365. https://www.doi.org/10.1007/s11340-009-9232-y
  2. Zhao T., Le V.T., Goo N.S. // J. Mech. Sci. Technol. 2020. V. 34. № 4. P. 1655. https://www.doi.org/10.1007/s12206-020-0328-8
  3. Karpagaraj A. Optical Methods in Stress Measurement. // Applications and Techniques for Experimental Stress Analysis. / Ed. Balaji P.S. IGI Global. 2020. P. 102. ISBN: 9781799816904. https://www.doi.org/10.4018/978-1-7998-1690-4
  4. Baek T.H., Kim M.S. Speckle Interferometry for Displacement Measurement and Hybrid Stress Analysis. // Interferometry – Research and Applications in Science and Technology. / Ed. Pavlov I. Elsevier, 2012. P. 149. ISBN 978-953-51-0403-2. https://www.doi.org/10.5772/2635
  5. Kim H.J., Ji S., Han J.Y., Cho H.B., Park Y.-G., Choi D., Cho H., Park J.-U., Im W.B. // NPG Asia Materials. 2022. V. 14. P. 26. https://doi.org/10.1038/s41427-022-00374-8
  6. Ahn S.Y., Timilsina S., Shin H.G., Lee J.H., Kim S.-H., Sohn K.-S., Kwon Y.N., Lee K.H., Kim J.S. // iScience. 2023. V. 26. Iss. 1. P. 105758. https://doi.org/10.1016/j.isci.2022.105758
  7. Wu Y., Gan J., Wu X. // J. Mater. Res. Technol. 2021. V. 13. P. 1230. https://doi.org/10.1016/j.jmrt.2021.05.035
  8. Fujio Y., Xu Ch.-N., Sakata Y., Ueno N., Terasaki N. // J. Alloys Compd. 2020. V. 832. P. 154900. https://doi.org/10.1016/j.jallcom.2020.154900
  9. Banishev A.F., Banishev A.A. // Int. J. Modern Phys. B. 2019. V. 33. № 30. P. 1950367. https://www.doi.org/10.1142/S02179792195036614
  10. Wang Ch., Peng D., Pan C. // Sci. Bull. 2020. V. 65. № 14. P. 1147. https://doi.org/10.1016/j.scib.2020.03.034
  11. Zhang J.-Ch., Wang X., Marriott G., Xu Ch.-N. // Prog. Mater. Sci. 2019. V. 103. P. 678. https:// www.doi.org/10.1016/j.pmatsci.2019.02.001
  12. Wang X., Peng D., Huang B., Pan C., Wang Zh.L. // Nano Energy. 2019. V. 55. P. 389. https:// www.doi.org/10.1016/j.nanoen.2018.11.014
  13. Liu L., Xu Ch.-N., Yoshida A., Tu D., Ueno N., Kainuma Sh. // Adv. Mater. Technol. 2018. V. 4. Iss. 1. P. 1800336. https://www.doi.org/10.1002/admt.201800336
  14. Feng A., Smet P.F. // Materials. 2018. V. 11. № 484. P. 1. https://www.doi.org/10.3390/ma11040484
  15. Банишев А.Ф. // Письма в ЖТФ. 2021. Т. 47. № 11. С. 33. https://www.doi.org/10.21883/PJTF.2021.11.51005.18739
  16. Банишев А.Ф. // Поверхность. Рентген. синхротр, и нейтрон. исслед. 2022. Т. 3. С. 50. https://www.doi.org/10.31857/S1028096022030049
  17. Sun H., Zhao Y., Wang Ch., Zhou K., Yan Ch., Zheng G., Huang J., Dai K., Liu Ch., Shen Ch. // Nano Energy. 2020. V. 76. P. 105035. https://doi.org/10.1016/j.nanoen.2020.105035
  18. Azad A.I., Rahimi M.R., Yun G.J. // Smart Mater. Struct. 2016. V. 25. P. 095032. https://www.doi.org/10.1088/0964-1726/25/9/095032
  19. Terasaki N., Yamada H., Xu Ch.-N. // Catalysis Today. 2013. V. 201. P. 203. https://doi.org/10.1016/j.cattod.2012.04.040
  20. Chandra B.P., Chandra V.K., Piyush Jha. // Physica B: Cond. Matter. 2015. V. 463. P. 62. https://doi.org/10.1016/j.physb.2015.01.030
  21. Bünzli J.-C.G., Wong K.-L. // J. Rare Earths. 2018. V. 36. № 1. P. 1. https://doi.org/10.1016/j.jre.2017.09.005
  22. Xiong P., Peng M., Yang Zh. // iScience. 2021. V. 24. P. 101944. https://doi.org/10.1016/j.isci. 2020.10194
  23. Dorenbos P. // Journal of The Electrochemical Society. 2005. V. 152(7). P. H107-H110. https://doi.org/10.1149/1.1926652
  24. Katsumata T., Toyomane S., Sakai R., Komuro S., Morikawa T. // J. Am. Ceram. Soc. 2006. V. 89 (3). P. 932–936. https://doi.org/10.1111/j.1551-2916.2005.00856.x
  25. Kim J.S., Koh H.J., Lee W.D., Shin N., Kim J.G., Lee K.H., Sohn K.S. // Met Mater. Int. 2008. V. 14. P. 165. https://www.doi.org/10.3365/met.mat.2008.04.16.
  26. Timilsina S., Lee K.H., Jang I.Y., Kim J.S. // Acta Materialia. 2013. V. 61. № 19. P. 7197. https://doi.org/10.1016/j.actamat.2013.08.024
  27. Timilsina S. Lee K.H., Kwon Y.N., Kim J.S. // J. Am. Ceram. Soc. 2015. V. 98. № 7. P. 1. https://doi.org/10.1111/jace.13566
  28. Nao Terasaki, Nao Ando, Kei Hyodo. // Japanese Journal of Applied Physics. 2022. V. 61. P. SE1009-SE1006. https://doi.org/10.35848/1347-4065/ac5069
  29. Ha Jun Kim, Sangyoon Ji, Ju Yeon Han, Han Bin Cho, Young-Geun Park, Dongwhi Choi, Hoonsung Cho, Jang-Ung Park, Won Bin Im. // NPG Asia Materials. 2022. 14:26. P. 1–12. https://doi.org/10.1038/s41427-022-00374-8

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of the experimental setup: 1 - glass substrate; 2 - composite mechanoluminescent layer; 3 - continuous laser with wavelength λ = 405 nm; 4 - pulsed YAG:Nd laser with λ = 1.06 μm; 5 - spectrometer (monochromator); 6 - digital oscilloscope; 7 - optical fibre

Baixar (101KB)
3. Fig. 2. Photoluminescence and optically stimulated anti-Stokes luminescence spectra of SrAl2O4:Eu2+,Dy3+ (a) and Sr4Al14O25:Eu2+,Dy3+ (b): photoluminescence excited by a continuous laser with λ = 405 nm (1, magnified three times); under simultaneous exposure to a continuous and pulsed YAG:Nd laser (λ = 1. 06 μm) (2); 3 - through a) - 1 (3), 2 (4), 3 s (5) and b) - 10 (3), 20 (4), 30 (5), 40 s (6) after switching off the continuous laser

Baixar (164KB)
4. Fig. 3. Schematic of levels and transitions between them of luminescent centres of europium ions (Eu2+) and traps (Dy3+ ions). Emission transitions are indicated by dashed lines, relaxation transitions by zigzag lines. The figures show the main (1) and excited levels (2-4) of europium. a - The action of short-wave radiation (λ = 405 nm) leads to excitation of photoluminescence of Eu2+ ions and occupancy of Dy3+ trap levels (dark grey arrows). Photoluminescence at action of long-wave radiation (λ = 1.06 μm) is caused by excitation of populated trap levels (light grey arrows). b - Mechanoluminescence at impact of the striker is caused by deformation of the material and displacement of populated trap levels: as a result, tunnel transitions of electrons into the conduction zone become possible

Baixar (271KB)
5. Fig. 4. (a) - Schematic of the experiment on visualisation of radiation impact on the sample: 1 - stainless steel plate; 2 - YAG:Nd-laser; 3 - heat propagation and thermal deformations; 4 - composite layer; 5 - video camera (shooting speed 1000 frames/s). Visualisation of heat propagation and thermo-deformations in a 100 µm thick stainless steel plate under the influence of a powerful laser pulse I ≈ 7 × 104 W/cm2: (b) - short flash of photoluminescence of the mechanoluminescent layer excited by thermal radiation at the moment of laser exposure; sample during the first ~20 ms (c) and ~20 ms (d) after photoluminescence fading; glow of the mechanoluminescent layer after 300 ms (e) and 1 s (f) after photoluminescence fading

Baixar (206KB)
6. Fig. 5. Scheme of the experiment on visualisation of mechanical impact on the sample (a): 1 - stainless steel plate; 2 - striker; 3 - plate piercing; 4 - mechanoluminescent layer; 5 - video camera (shooting speed 50 frames/s). Visualisation of stresses and deformations occurring at destruction (piercing) of a stainless steel plate under impact action of a striker: at striking the striker before (b) and immediately after piercing the plate (c)

Baixar (99KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024