Investigation of Plasticity in Memristive Structures Based on Epitaxial Films Nd2–xCexCuO4–y

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Pulse studies of resistive switching in memristive planar heterocontacts based on Nd2–xCexCuO4–y epitaxial films are presented. The possibility of regulating the resistive metastable states of memristive planar systems based on such films according to certain pulse research protocols has been studied. Various metastable states were realized when changing external parameters: frequency, voltage of the electric field applied to heterocontacts. Dynamic effects have been investigated, and transition times from one metastable state to another have been determined. The change in electrodynamic properties during the action of a sinusoidal alternating electric field at frequencies of 10–3 Hz and in pulse mode with a pulse duration from 0.1 ms to 25 s was directly investigated by measuring the volt-ampere characteristics, recording oscillograms of current and voltage at the heterocontact and temperature dependences of resistance of metastable phases. The multilevel nature of the metastable resistive states of the studied systems and the ability to adjust the switching time characterize the plasticity of these devices and the prospects for their use as memory elements for neuromorphic applications in spike neural networks.

全文:

受限制的访问

作者简介

N. Tulina

Osipyan Institute of Solid State Physics, RAS

编辑信件的主要联系方式.
Email: tulina@issp.ac.ru
俄罗斯联邦, Chernogolovka

A. Rossolenko

Osipyan Institute of Solid State Physics, RAS

Email: tulina@issp.ac.ru
俄罗斯联邦, Chernogolovka

I. Shmytko

Osipyan Institute of Solid State Physics, RAS

Email: tulina@issp.ac.ru
俄罗斯联邦, Chernogolovka

I. Borisenko

Institute of Microelectronics Technology and High Purity Materials

Email: tulina@issp.ac.ru
俄罗斯联邦, Chernogolovka

A. Ivanov

MEPhI National Research Nuclear University

Email: tulina@issp.ac.ru
俄罗斯联邦, Moscow

参考

  1. Yang J.J., Strukov D.B., Stewart D.R. // Nature Materials. 2013. V. 8. P. 13. https://www.doi.org/10.1038/nnano.2012.240
  2. Chen A. // Solid-State Electron. 2016. V. 125. P. 25. https://www.doi.org/10.1016/j.sse.2016.07.006
  3. Wang C., Wu H., Gao B., Zhang T., Yang Y., Qian H. // Microelectron. Eng. 2018. V. 187–188. P. 121. https://www.doi.org/10.1016/j.mee.2017.11.003
  4. Li Y., Wang Z., Midya R., Xia Q., Yang J.J. // J. Phys. D.: Appl. Phys. 2018. V. 51. P. 503002. https://www.doi.org/ 10.1088/1361-6463/aade3f
  5. Pérez-Tomás A. // Adv. Mater. Interfaces. 2019. V. 6. P. 1970096. https://www.doi.org/10.1002/admi.201900471
  6. Mikhaylov A, Pimashkin A, Pigareva Y, Gerasimova S., Gryaznov E., Shchanikov S., Zuev A., Talanov M., Lavrov I., Demin V., Erokhin V., Lobov S., Mukhina I., Kazantsev V., Wu H., Spagnolo B. // Frontiers Neu-rosci. 2020. V. 14. P. 358. https://www.doi.org/10.3389/fnins.2020.00358
  7. International Technology Roadmap for Semicon-ductors and the Semiconductor Technology Roadmap (2023) Semiconductor Industry Association. https://www.semiconductors.org/wpcНРСtent/up-loads/2018/06/0_2015-ITRS-2.0-Executive-Report
  8. Tulina N.A., Ivanov A.A. // J. Supercond. Nov. Magn. 2020. V. 33. P. 2279. https://www.doi.org/10.1007/s10948-019-05383-3
  9. Тулина Н.А., Россоленко А.Н., Шмытько И.М., Иванов А.А., Ионов А.М., Божко С.И., Сироткин В.В. // Наноиндустрия. 2019. Т. 89. С. 237. https://www.doi.org/10.22184/NanoRus.2019.12.89. 237.240
  10. Thomas A. // J. Phys. D: Appl. Phys. 2013. V. 46. P. 093001. https://www.doi.org/10.1088/0022-3727/46/9/093001
  11. Stoliar P., Tranchant J., Corraze B., Janod E., Bes-land M.-P., Tesler F., Rozenberg M., Cario L. // Adv. Functional Mater. 2017. V. 27. P. 1604740. https://www.doi.org/10.1002/adfm.201604740
  12. Tulina N.A., Rossolenko A.N., Ivanov A.A, Sirotkin V.V., Shmytko I.M., Borisenko I.Yu., Ionov А.М. // Physica C: Superconduct. Appl. 2016. V. 527. P. 41. https://www.doi.org/10.1016/j.physc.2016.05.015
  13. Mang P.K., Larochelle S., Mehta A., Vajk O.P., Erickson A.S., Lu L., Buyers W.J.L., Marshall A.F., Prokes K., Greven M. // Phys. Rev. B. 2004. V. 70. P. 094507. https://www.doi.org/10.1103/PhysRevB.70.094507
  14. Serb A., Khiat A., Prodromakis T. // IEEE Trans. Electron Devices. 2015. V. 62. P. 3685. https://www.doi.org/10.1109/TED.2015.2478491
  15. Berdan R., Serb A., Khiat A., Regoutz A., Papavassi- liou Ch., Prodromakis T. // IEEE Trans. Electron Devices. 2015. V. 62. P. 2190. https://www.doi.org/10.1109/TED.2015.2433676
  16. Tulina N.A., Rossolenko A.N., Shmytko I.M., Ivanov A.A., Sirotkin V.V., Borisenko I.Y., Tulin V.A. // Supercond. Sci. Technol. 2019. V. 32. P. 015003. https://www.doi.org/10.1088/1361-6668/aae966
  17. Tulina, N.A., Ivanov, A.A., Rossolenko. Ivanov A.A., Sirotkin V. V., Shmytko I.M., Borisenko I.Y., Ionov A.M. // Mater. Lett. 2017. V. 203. P. 97. https://www.doi.org/10.1016/j.matlet.2017.05.091
  18. Acha C. // J. Phys. D: Appl. Phys. 2011. V. 44. P. 345301. https://www.doi.org/10.1088/0022-3727/44/34/345301
  19. Tulina N.A., Borisenko I.Yu. // Phys. Lett. A. 2008. V. 372. P. 918. https://www.doi.org/10.1016/j.physleta.2007.08.045
  20. Sirotkin V.V., Tulina N.A., Rossolenko A.N., Borisenko I.Yu. // Bull. RAS. 2016. V. 80. P. 497. https://www.doi.org/10.3103/S1062873816050191
  21. Tulina N.A., Shmytko I.M., Ivanov A.A., Rossolenko A.N., Zotov A.V., Borisenko I.Y., Sirorkin V.V., Tulin V.A. // Rus. Microelectronics. 2022. V. 51. № 5. P. 349. https://www.doi.org/10.1134/s1063739722050110

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Example of the VAC of a heterophase Ag/NCO/NCCO/STO microcontact sample (a); X-ray diffraction of a two-phase NCCO/NCO film (b); schematic of the microcontact structure showing current (I1, I2) and potential (U1, U2) contacts (c)

下载 (257KB)
3. Fig. 2. Example of lithography-formed Ag/NCO/NCCO/STO heterophase sample VAC. The voltage sweep was along the branch directions: 0-1-2-3-4-4-0 (a); image (b) and profile (c) of the sample formed by lithography

下载 (300KB)
4. Fig. 3. Example of 10 cycles of WAC in different coordinate representations (a), stability of metastable low-resistive (On) and high-resistive (Off) states (b) and sample plasticity dependent on pulse exposure time (c) in Ag/NCO/NCCO/STO heterojunctions of microcontact type

下载 (421KB)
5. Fig. 4. Time dependence of lithography-type Ag/NCO/NCCO/STO sample resistance when passing pulses of different durations

下载 (283KB)
6. Fig. 5. Dependence of lithographic Ag/NCO/NCCO/STO sample resistance on the ratio of time to pulse duration during transitions from low-resistive to high-resistive state and vice versa. The upper part of the figure shows the pulse signal waveform

下载 (231KB)
7. Fig. 6. Dependence of the resistance of metastable resistive states of the Ag/NCO/NCCO/STO lithography-type sample on the pulse duration with the amplitude of 4 V

下载 (70KB)

版权所有 © Russian Academy of Sciences, 2024