On the Multi-Layered Adsorption of Alcanols in the Vicinity of Liquid–Vapor Transition at the Saturated Hydrocarbon–Water Interface

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Structure of adsorption layer of long-chain monoatomic alcohols: 1-dodecanol and 1-tetracosanol at the interfaces n-hexane – water and n-hexadecane – water in the vicinity of “liquid – vapor” thermotropic phase transition is investigated by the method of X-ray reflectometry at synchrotron source. Model-independent structural data obtained on the adsorption layers under investigation deviate considerably from the structural parameters which have been proposed previously within a model-based representation and discussed in previous publications on said systems. It is shown that in the low-temperature mesophase the adsorption film consists of a Gibbs monolayer, a transitional liquid region with thickness of two to three monolayers ~50 Å and an extended (wide up to 200 Å) layer of micelles. Presence of a plane of the closest approach of micellar layer to the adsorption film at the interface is established. Transition to the high-temperature mesophase is followed by liquefying and partial evaporation of alcanol film along with observed depletion of micellar layer down to its complete disappearance.

全文:

受限制的访问

作者简介

A. Tikhonov

P.L. Kapitza Institute for Physical Problems, RAS

编辑信件的主要联系方式.
Email: tikhonov@kapitza.ras.ru
俄罗斯联邦, Moscow

Yu. Volkov

Kurchatov Institute

Email: volkov.y@crys.ras.ru
俄罗斯联邦, Moscow

参考

  1. Gibbs J.W. // Collected Works, Vol. 1: Thermo-dynamics. N.Y.: Dover, 1961. P. 219.
  2. Jasper J.J., Houseman B.L. // J. Phys. Chem. 1963. V. 67. P. 1548. https://www.doi.org/10.1021/j100801a035
  3. Motomura K. // J. Colloid Interface Sci. 1978. V. 64. P. 348. https://www.doi.org/10.1016/0021-9797(78)90372-7
  4. Lin M., Ferpo J.L., Mansaura P., Baret J.F. // J. Chem. Phys. 1979. V. 71. P. 2202. https://www.doi.org/10.1063/1.438551
  5. Hayami Y., Uemura A., Ikeda M., Aratono M., Motomura K. // J. Colloid Interface Sci. 1995. V. 172. P. 142. https://www.doi.org/10.1006/jcis.1999.6536
  6. Uredat S., Findenegg G.H. // Langmuir. 1999. V. 15. P. 1108. https://www.doi.org/10.1021/la981264q
  7. Aratono M., Murakami D., Matsubara H., Takiue T. // J. Phys. Chem. B. 2009. V. 113. P. 6347. https://www.doi.org/10.1021/jp9001803
  8. Tikhonov A.M., Pingali S.V., Schlossman M.L. // J. Chem. Phys. 2004. V. 120. P. 11822. https://www.doi.org/10.1063/1.1752888
  9. Zhang Z., Mitrinovic D.M., Williams S.M., Huang Z., Schlossman M.L. // J. Chem. Phys. 1999. V. 110. P. 7421. https://www.doi.org/10.1063/1.478644
  10. Pingali S.V., Takiue T., Guangming L., Tikhonov A.M., Ikeda N., Aratono M., Schlossman M.L. // J. Dispersion Sci. Technol. 2006. V. 27. P. 715. https://www.doi.org/10.1080/01932690600660582
  11. Tikhonov A.M., Schlossman M.L. // J. Phys.: Condens. Matter 2007. V. 19. P. 375101. https://www.doi.org/10.1088/0953-8984/19/37/375101
  12. Takiue T., Matsuo T., Ikeda N., Motomura K., Aratono M. // J. Phys. Chem. B 1998. V. 102. P. 4906. https://www.doi.org/10.1021/jp980292e
  13. Тихонов А.М., Асадчиков В.Е., Волков Ю.О., Нуждин А.Д., Рощин Б.С. // ПТЭ. 2021. № 1. С. 146. https://www.doi.org/10.31857/S0032816221010158
  14. Schlossman M.L., Synal D., Guan Y., Meron M., Shea-McCarthy G., Huang Z., Acero A., Williams S.M., Rice S.A., Viccaro P.J. // Rev. Sci. Instrum. 1997. V. 68. P. 4372. https://www.doi.org/10.1063/1.1148399
  15. Kozhevnikov I.V. // Nucl. Instrum. Methods. Phys. Res. A. 2003. V. 508. P. 519. https://www.doi.org/10.1016/S0168-9002(03)01512-2
  16. Kozhevnikov I.V., Peverini L., Ziegler E. // Phys. Rev. B. 2012. V. 85. P. 125439. http://dx.doi.org/10.1103/PhysRevB.85.125439
  17. Becher P. Emulsions: Theory and Practice, 3rd ed. Oxford: Oxford University Press, 2001. 514 p.
  18. Smith G.N., Brown P., Rogers S.E., Eastoe J. // Langmuir. 2013. V. 29. P. 3252. https://www.doi.org/10.1021/la400117s
  19. Tikhonov A.M., Li M., Schlossman M.L. // J. Phys. Chem. B. 2001. V. 105. P. 8065. https://doi.org/10.1021/jp011657p
  20. Bertrand E., Dobbs H., Broseta D., Indekeu J., Bonn D., Meunier J. // Phys. Rev. Lett. 2000. V. 85. P. 1282. https://www.doi.org/10.1103/PhysRevLett.85.1282

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Angular dependences of the reflection coefficient R from dodecanol at the n-hexane-water interface, normalised to the Fresnel function RF, in the low-temperature (T = 8.0°C, circles; T = 20.0°C, squares) and high-temperature (T = 55.1°C, triangles) phases. The lines indicate the calculated reflection curves

下载 (111KB)
3. Fig. 2. Angular dependences of the reflection coefficient R from tetracosanol at the n-hexadecane-water interface, normalised to the Fresnel function RF, in the low-temperature (T = 50.8°C, circles), transition (T = 53.0°C, squares) and high-temperature (T = 81.9°C, triangles) phases. Lines indicate calculated reflection curves

下载 (117KB)
4. Fig. 3. Reconstructed electron concentration profiles ρ(z) for the n-hexane-water interface, normalised to the electron concentration in water at normal conditions ρw = 0.333 e/Å3, in the low-temperature (T = 8.0°C, solid line; T = 20.0°C, dashed line) and high-temperature (T = 55.1°C, dashed line) phases

下载 (84KB)
5. Fig. 4. Reconstructed electron concentration profiles ρ(z) for the n-hexadecane-water interface, normalised to the electron concentration in water at normal conditions ρw = 0.333 e/Å3, in the low-temperature (T = 50.8°C, solid line), transition (T = 53.0°C, dashed line) and high-temperature (T = 81.9°C, dotted line) phases

下载 (92KB)

版权所有 © Russian Academy of Sciences, 2024