Molybdenum Texture Effect on High Temperature Oxidation Resistance of Cr/Mo-Coated Zr–1Nb Alloy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of the crystal structure of the Mo sublayer on the resistance of the Zr–1Nb zirconium alloy with a Cr/Mo coating to high-temperature oxidation in air were studied. Three types of coating were deposited by magnetron sputtering: a single-layer Cr coating with a thickness of 8 μm, bilayer coatings with a Mo sublayer (3 μm) of various textures and an outer protective Cr layer (8 μm). Different textures of molybdenum layers were formed by changing the configuration of the magnetron sputtering system. Coated samples were oxidized in an atmospheric furnace at 1100°C for 15, 30, 45 and 60 min. The results of X-ray diffraction and scanning electron microscopy showed that applying Mo sublayer limited the Cr–Zr interdiffusion. Diffusion of Mo leads to the formation of interdiffusion layers Cr–Mo and Mo–Zr. Faster diffusion is observed at the Cr–Mo interface. The thickness of the residual Cr layer in bilayer coatings is greater than in a single-layer one under similar oxidation conditions.

About the authors

A. V. Abdulmenova

National Research Tomsk Polytechnic University

Author for correspondence.
Email: ava75@tpu.ru
Russia, 634050, Tomsk

M. S. Syrtanov

National Research Tomsk Polytechnic University

Author for correspondence.
Email: maxim-syrtanov@mail.ru
Russia, 634050, Tomsk

E. B. Kashkarov

National Research Tomsk Polytechnic University

Email: maxim-syrtanov@mail.ru
Russia, 634050, Tomsk

D. V. Sidelev

National Research Tomsk Polytechnic University

Email: maxim-syrtanov@mail.ru
Russia, 634050, Tomsk

References

  1. Terrani K.A. // J. Nucl. Mater. 2018. V. 501. P. 13. https://doi.org/10.1016/j.jnucmat.2017.12.043
  2. Bragg-Sitton S. // Nucl. News. 2014. V. 57. № 3. P. 83.
  3. Bischoff J., Delafoy C., Vauglin C., Barberis P., Roubeyrie C., Perche D., Duthoo D., Schuster F., Brachet J.C., Schweitzer E.W., Nimishakavi K. // Nucl. Engin. Technol. 2018. V. 50. P. 223. https://doi.org/10.1016/j.net.2017.12.004
  4. Khatkhatay F., Jiao L., Jian J., Zhang W., Jiao Z., Gan J., Zhang H., Zhang X., Wang H. // J. Nucl. Mater. 2014. V. 451. Iss. 1–3. P. 346. https://doi.org/10.1016/j.jnucmat.2014.04.010
  5. Li W., Wang Z., Shuai J., Xu B., Wang A., Ke P. // Ceram. Intern. 2019. V. 45. Iss. 11. P. 13912. https://doi.org/10.1016/j.ceramint.2019.04.089
  6. Tang C., Stueber M., Seifert H.J., Steinbrueck M. // Corrosion Rev. 2017. V. 35. Iss. 3. P. 141. https://doi.org/10.1515/corrrev-2017-0010
  7. Tallman D., Anasori B., Barsoum M.A. // Mater. Res. Lett. 2013. V. 1. Iss. 3. P. 115. https://doi.org/10.1080/21663831.2013.806364
  8. Park D.J., Kim H.G., Jung Y., Park J.H., Yang J.H., Koo Y.H. // J. Nucl. Mater. 2016. V. 482. P. 75. https://doi.org/10.1016/j.jnucmat.2016.10.021
  9. Brachet J.C., Le Saux M., Le Flem M., Urvoy S., Rouesne E., Guilbert T., Cobac C., Lahogue F., Rousselot J., Tupin M., Billaud P., Hossepied C., Schuster F., Lomello F., Billard A., Velisa G., Monsifrot E., Bischoff J., Ambard A. // Proc. TopFuel. 2015. P. 1.
  10. Yang J., Steinbrück M., Tang C., Große M., Liu J., Zhang J., Yun D., Wang S. // J. Alloys Compd. 2022. V. 895. P. 162450. https://doi.org/10.1016/j.jallcom.2021.162450
  11. Chen H., Wang X., Zhang R. // Coatings. 2020. V. 10 P. 808. https://doi.org/10.3390/coatings10090808
  12. Jiang J., Du M., Pan Z., Yuan M., Ma X., Wang B. // Mater. Design. 2021. V. 212. № 110168. P. 1. https://doi.org/10.1016/j.matdes.2021.110168
  13. Wang X., Liao Y., Xu C., Guan H., Zhu M., Gao C., Jin X., Pang P., Du J., Liao B., Xue W. // J. Alloys Compd. 2021. V. 883. № 160798. P. 1. https://doi.org/10.1016/j.jallcom.2021.160798
  14. Krejčí J., Ševeček M., Kabátová J., Manoch F., Kočí J., Cvrček L., Málek J., Krum S., Šutta P., Bublíková P., Halodová P., Namburi H.K. // Proc. TopFuel. 2018. P. 1.
  15. Kashkarov E., Afornu B., Sidelev D., Krinitcyn M., Gouws V., Lider A. // Coatings. 2021. V. 11. № 5. P. 1. https://doi.org/10.3390/coatings11050557
  16. Wei T., Zhang R., Yang H., Liu H., Qiu S., Wang Y., Du P., He K., Hu X., Dong C. // Corros. Sci. 2019. V. 158. № 108077. P. 1. https://doi.org/10.1016/j.corsci.2019.06.029
  17. Syrtanov M.S., Kashkarov E.B., Abdulmenova A.V., Sidelev D.V. // Surf. Coat. Technol. 2022. V. 439. № 128459. P. 1. https://doi.org/10.1016/j.surfcoat.2022.128459
  18. Yeom H., Maier B., Johnson G., Dabney T., Walters J., Sridharan K. // J. Nucl. Mater. 2018. V. 507. P. 306. https://doi.org/10.1016/j.jnucmat.2018.05.014
  19. Sidelev D.V., Kashkarov E.B., Syrtanov M.S., Krivo- bokov V.P. // Surf. Coat. Technol. 2019. V. 369. P. 69. https://doi.org/10.1016/j.surfcoat.2019.04.057
  20. Stylianou R., Stylianoua R., Tkadletza M., Schalka N., Penoyb M., Czettlc C., Mitterera C. // Surf. Coat. Technol. 2019. V. 359. P. 314. http://doi.org/10.1016/j.surfcoat.2018.12.095

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (120KB)
3.

Download (50KB)
4.

Download (1MB)
5.

Download (442KB)

Copyright (c) 2023 А.В. Абдульменова, М.С. Сыртанов, Е.Б. Кашкаров, Д.В. Сиделев