Effect of Structural Reorganization of the Surface Layer in AMN-P and OPMN-P Membranes on the Transport Characteristics of the Electronanofiltration Separation of Aqueous Ammonium Chloride Solution
- Autores: Lazarev S.I.1, Konovalov D.N.1, Khorokhorina I.V.1, Lua P.1
-
Afiliações:
- Tambov State Technical University
- Edição: Nº 10 (2023)
- Páginas: 88-95
- Seção: Articles
- URL: https://archivog.com/1028-0960/article/view/664496
- DOI: https://doi.org/10.31857/S1028096023100126
- EDN: https://elibrary.ru/ODZYDD
- ID: 664496
Citar
Resumo
The absorption spectra of infrared radiation by membranes of the AMN-P and OPMN-P brands are analyzed. In the spectra of the surface layer of the AMN-P membrane, there is a decrease in the relative intensity of the frequencies of the carbonyl group (1724, 3392 cm–1 for air dry). For the cellulose acetate AMN-P membrane, the number of hydrophilic OH groups increases, which changes its molecular structure and transport characteristics. In the infrared radiation spectra of the surface layer of the OPMN-P membrane, the 1650–1670 cm–1 band characteristic of C=O group shows changes in the frequency of the spectrum: for air-dry and water-saturated samples, it shifts from 1652 to 1666 cm–1, respectively. Interactions of carbonyl (C=O) and amide (H–N) groups form the supramolecular structure of polyamides. Changes in the infrared radiation spectrum of the water-saturated sample of the OPMN-P membrane can be explained by the fact that the C=O…–…H–N bonds of the amide fragment do not break. Therefore, membrane swelling partially affects the structural rearrangement of the polyamide at the supramolecular level. In the electron nanofiltration separation of an aqueous solution of ammonium chloride, two intervals of change in the specific output flux are noted at fixed transmembrane pressure and experiment time. The first period occurs at a current density of 12.82 to 15.38 A/m2 and is associated with the penetration of the solvent with a slight gas formation on the electrodes. The second period is observed from 15.38 to 25.64 A/m2 and is associated with membrane degradation and intense gas formation, especially chlorine. It is noted that in the intermembrane channels the migration of cations and anions is affected by the processes of throttling, heat release, when operating in the limiting mode (when current carriers – H+ and OH–) appear, which is confirmed by the data of studies of the electrochemical parameters of the membrane system.
Sobre autores
S. Lazarev
Tambov State Technical University
Email: kdn1979dom@mail.ru
Russia, 392000, Tambov
D. Konovalov
Tambov State Technical University
Autor responsável pela correspondência
Email: kdn1979dom@mail.ru
Russia, 392000, Tambov
I. Khorokhorina
Tambov State Technical University
Email: kdn1979dom@mail.ru
Russia, 392000, Tambov
P. Lua
Tambov State Technical University
Email: kdn1979dom@mail.ru
Russia, 392000, Tambov
Bibliografia
- Mahendran R., Bhattacharya P.K. // J. Polymer Engineer. 2013. V. 33. № 4. P. 369. https://doi.org/10.1515/polyeng-2013-0007
- Голева Е.А., Васильева В.И., Селеменев В.Ф., Кузнецов В.А., Останкова И.В. // Сорбционные и хроматографические процессы. 2016. Т. 16. № 5. С. 640.
- Seitzhanova M.A., Yashnik S.A., Ismagilov Z.R., Khairulin S.R., Mansurov Z.A., Montayeva A.A. // Chem. Sustainable Development. 2020. V. 28. № 5. P. 480. https://doi.org/10.15372/csd20202550
- Акберова Э.М., Васильева В.И., Костылев Д.В., Смагин М.А. // Сорбционные и хроматографические процессы. 2019. Т. 19. № 5. С. 557. https://doi.org/10.17308/sorpchrom.2019.19/1170
- Алтынов В.А., Кравец Л.И., Рогачев А.А., Ярмоленко М.А. // Наноиндустрия. 2020. Т. 13. № S2. С. 303. https://doi.org/10.22184/1993-8578.2020.13.2s.303.311
- Нифталиев С.И., Козадерова О.А., Власов Ю.Н., Ким К.Б., Матчина К.С. // Сорбционные и хроматографические процессы. 2015. Т. 15. № 5. С. 708.
- Лазарев С.И., Ковалев С.В., Коновалов Д.Н., Ковалева О.А. // Изв. вузов. Химия и хим. технология. 2020. Т. 63. № 9. С. 28. https://doi.org/10.6060/ivkkt.20206309.6196
- Deemter D., Salmerón I., Oller I., Amat A.M., Malato S. // Sci. Total Environment. 2022. V. 823. P. 153693. https://doi.org/10.1016/j.scitotenv.2022.153693
- Cha M., Boo C., Park C. // Process Safety and Environmental Protection. 2022. V. 159. P. 525. https://doi.org/10.1016/j.psep.2022.01.032
- Jordan M.L., Kulkarni T., Senadheera D.I., Kumar R., Lin Y.J., Arges C.G. // J. Electrochem. Soc. 2022. V. 169. № 4. P. 043511. https://doi.org/10.1149/1945-7111/ac6448
- Meng J., Shi L., Hu Z., Hu Y., Lens P., Wang S., Zhan X. // J. Membrane Sci. 2022. V. 642. P. 120001. https://doi.org/10.1016/j.memsci.2021.120001
- Лазарев С.И., Ковалев С.В., Коновалов Д.Н., Луа П. // Электрохимия. 2021. Т. 57. № 6. С. 355. https://doi.org/10.31857/S0424857021050091
- Petrychenko A., Makarenko I., Radovenchyk I., Shabliy T. // Eastern-European Journal of Enterprise Technologies. 2018. V. 4. № 6 (94). P. 26. https://doi.org/10.15587/1729-4061.2018.140549
- Продукция компании “Владипор” (2022) “Владипор” Россия, Владимир http://www.vladipor.ru/catalog/show/ (Дата обращения 07.09.2022).
- Лазарев С.И., Левин А.А., Ковалев С.В., Михайлин М.И., Рыжкин В.Ю., Хромова Т.А. // Вестник ТГТУ. 2020. Т. 26. № 4. С. 629. https://doi.org/10.17277/vestnik.2020.04.pp.629-636
- Лазарев С.И., Нагорнов С.А., Ковалев С.В., Коновалов Д.Н., Корнев А.Ю. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2022. № 1. С. 86. https://doi.org/10.31857/S1028096022010095
- Khorokhorina I.V., Lazarev S.I., Golovin Y.M., Lazarev D.S. // Izvestiya Vysshikh Uchebnykh Zavedenii, Seriya Khimiya i Khimicheskaya Tekhnologiya. 2020. V. 63. № 7. P. 95. https://doi.org/10.6060/ivkkt.20206307.6117
- Lazarev S.I., Golovin Y.M., Khorokhorina I.V., Lazarev D.S. // J. Phys. Chem. B. 2020. V. 14. P. 835. https://doi.org/10.1134/S1990793120050073
- Илиел Э., Аллинжер Н., Энжиал С., Моррисон Г. Конформационный анализ. Пер. с англ. / Ред. Ахрема А.А. М.: Мир, 1969. 592 с.
- Toprak C., Agar J.N., Falk M. // J. Chem. Soc., Faraday Trans. 1. 1979. V. 75. P. 803.
- Lazarev S.I., Kovaleva O.A., Konovalov D.N., Ignatov N.N. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2021. V. 15. P. 277. https://doi.org/10.1134/S1027451021020087
- Коновалов Д.Н., Луа П., Лазарев С.И., Коновалов Д.Д., Ковалев С.В., Кобелев Д.И., Федотов Н.А. // Вестник технологического университета. 2022. Т. 25. № 2. С. 14. https://doi.org/10.55421/1998-7072_2022_25_2_14
Arquivos suplementares
